Challenges and Failures in Green Building Design Using Under-Floor Air Distribution

Ken Urbanek, PE, HBDP, LEED AP
Director of Engineering

MKK CONSULTING ENGINEERS, INC.
50 years and counting!
Agenda

- UFAD Overview
- Challenges / Failures
- Steps for a Successful Implementation
- Case Studies
UFAD Overview
UFAD Overview

- Traditional Overhead HVAC System

(Image: Center for the Built Environment)
UFAD Overview

- Under-Floor Air Distribution (UFAD) HVAC System

(Image: Center for the Built Environment)
UFAD Overview

- **UFAD requires an access floor, which is:**
 - Raised floor on top of the structural system
 - Provides space for: electrical, low voltage and a cavity for UFAD
Recommendation:
- Use access floor for distribution of power and low voltage systems
- AND where you have an environment that has a high occurrence of change (occupant churn)

IF the two criterion are met then yes consider providing UFAD.

Recommendation is to not use an access floor with UFAD for just the HVAC benefits.
UFAD Benefits, Theoretically:
- User operability / thermal comfort control
- Space Acoustics (reduced HVAC system noise)
- Increased Indoor Air Quality
- Energy Efficiency
 - Reduced airflow energy use
 - Reduced pressure energy use
 - Increase plant efficiency (higher RAT and higher DAT)

Access Floor Benefits
- Spatial Characteristics (higher ceilings in certain cases)
- Spatial Flexibility (occupant churn)
• User operability / thermal comfort control
• A UFAD system can typically provide many more controllable zones than a traditional system.
• **UFAD Benefits:**
 • Delivers conditioned air to the occupied zone rather than the entire space, thus reduced supply airflow
Challenges & Failures
Challenges & Failures

- **Plenum Integrity, aka LEAKAGE!**
Challenges & Failures

• Plenum air leakage with UFAD

“The construction of an airtight plenum requires strict coordination of **TEN TO TWELVE TRADES** and special construction techniques that have not yet been developed for concrete, masonry, drywall, millwork, sealant and joint specialists, RAF installers, carpenters, sheet metal, plumbing, electrical, communications, etc.”

Challenges & Failures

- Plenum Integrity, aka LEAKAGE!
Challenges & Failures

- Plenum Integrity, aka LEAKAGE!
Challenges & Failures

• **Associated Problems**
 • Over cooling of the space as a result of over airing
 • Under cooling of the space as a result of under airing (remote spaces)
 • Breakdown of space stratification; air short cycling
 • Excessive fan energy to compensate for leakage
 • Excessive supplemental system energy to condition higher airflows (chillers, cooling towers, etc...)
Challenges & Failures

• **Thermal Decay**
 • **Energy Gain = Increased Supply Air Temperature**

(Image: Center for the Built Environment)
• **Thermal Decay**
 • Variable Supply Temperature; from close inlets to remote outlets
 • Difficult to satisfy all spaces on account of temperature variations
Challenges & Failures

- **Thermal Decay w/Semi Decoupled Perimeter System**

(Image: Center for the Built Environment)
Challenges & Failures

- Additional Challenges
 - Humidity Control
 - Outlet Placement Coordination
 - Plumbing Systems on the Access Floor & Water Control
 - Plenum Rated Components
 - User Operation & Maintenance – Leakage
 - User Operation & Maintenance – System Operation
 - User/Occupant Education
Steps for a Successful Implementation
Steps for a Successful Implementation

- Reducing thermal decay
 - Limit distance between UFAD inlets and remote outlets
 - Limit the use of semi-decoupled perimeter systems
Steps for a Successful Implementation

- Limit Distance On Semi-Decoupled Perimeter System

(Image: Center for the Built Environment)
Steps for a Successful Implementation

- Consider Alternate Perimeter Systems
 - Chilled Beams / Baseboard
 - Variable Refrigerant Flow
 - Heat Pumps (Geothermal or Tower/Boiler)
 - Chilled Water / Hot Water Fan Coils
 - Central Ducted system (below floor or overhead)
Steps for a Successful Implementation

- Reducing plenum leakage - Address all the trades that may interact with the access floor
Steps for a Successful Implementation

- Reducing plenum leakage
 - There are numerous interactions with the access floor
 - Provide clear documentation on sealing the plenum, including clear details & specifications showing what is required of all trades
Steps for a Successful Implementation

- Reducing plenum leakage
 - Specify products that address sealing the under floor.
 - Don’t Rely on “seal penetration” statements
Steps for a Successful Implementation

• Reducing plenum leakage
 • Specify performance requirements
 • Use mock-up tests to check means & methods
Steps for a Successful Implementation

• Reducing plenum leakage
 • Strictly enforce details and specifications
 • Communicate the end goal to all parties involved: contractors, sub-contractors, owner, operators, etc…
 • Ensure buy-in of the philosophy across the board
 • The design team needs to work together to develop a quality level for the access floor plenum construction that the owner is expecting and that the contractor MUST be held to.

• Continuous communication
Case Studies
Case Studies

- Case Study #2 (from paper) – Denver, CO
Case Study #2 (from paper) – Denver, CO
- 300,000 sqft, 5-story commercial office building
- Chilled Beams & Hot Water Perimeter System
- LEED CS & CI - Platinum

Operational Issues of Note
- Extensive sun projection into building created issues with UFAD capacity
- Operators didn’t understand need for higher discharge air temp for UFAD, led to cold calls
- Variable occupant spaces not suited to manual control, i.e. conference rooms
Case Studies

- Case Study #3 (from paper) – Denver, CO
Case Studies

- Case Study #3 (from paper) – Denver, CO
 - 500,000 sqft, 22-story commercial office building
 - Semi-Decoupled Perimeter System
 - LEED CS & CI - Platinum
- Operational Issues of Note
 - Air highways minimized thermal decay and multi-story cascading thermal decay
 - High performance envelope reduced intense cooling at perimeter
 - Issues with furniture coordination….aka diffusers under cube walls/cabinets
Case Studies

- Case Study #4 (from paper) – Denver, CO
Case Study #4 (from paper) – Denver, CO

- 50,000 sqft, 2-story built-to-suit office building
- Variable Refrigerant Flow Perimeter System
- LEED NC – Gold

Operational Issues of Note

- Decoupled system eliminates problems with thermal decay and perimeter cooling
- Extensive sun projection into building created issues with UFAD capacity
Case Studies

- Case Study #4 (from paper) – Denver, CO
Questions?
Thank you!

Ken Urbanek, PE, HBDP, LEED AP
kurbanek@mkkeng.com