Project Delivery Performance:
Lessons Learned from Vertical Construction

AFH30:
Digital Project Delivery

Presented by:
Behzad Esmaeili, Ph.D.

January 11th, 2014
Agenda

- Project motivation
- Background
- Limitations in the current BOK
- Goals and objectives
- Research methods
- Data collection
- Data analysis
- Conclusions
Observed problem:
“The current project delivery decisions made by owners are on the basis of personal preference and comfort level.”

Reason:
“Due to lack of experience and objective performance data.”

Solution:
“There is a need for objective data and empirical evidence to support the performance of various project delivery methods.”
A research project conducted by Dr. V. Sanvido and Dr. M. Konchar of Penn State and CII Research Team 133

Title: “Project delivery systems: CM at risk, design-build, design-bid-build.”

Goal: “To improve delivery method selection by providing practical guidelines though empirical evidence.”

Key performance metrics: Cost, schedule, and quality

Project delivery systems: DB, DBB, and CM at risk

Database: 351 building projects

Contribution: “To provide guidance for owners on how to organize a successful project.”

Findings:
- The costs and schedule growth of DBB projects were higher than the other methods; and
- The construction and delivery speed of DB was faster than DBB.
Summary of principal metrics studied by CII (1997)

<table>
<thead>
<tr>
<th>Performance metrics</th>
<th>DBB</th>
<th>DB</th>
<th>CM@R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost growth (Median)</td>
<td>4.83</td>
<td>2.17</td>
<td>3.37</td>
</tr>
<tr>
<td>Schedule growth (Median)</td>
<td>4.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Construction speed (Median-1000s SF/month)</td>
<td>5135</td>
<td>9091</td>
<td>8192</td>
</tr>
<tr>
<td>Design and construction speed (Median-1000s SF/month)</td>
<td>3250</td>
<td>6842</td>
<td>4712</td>
</tr>
<tr>
<td>Intensity (Median)</td>
<td>3.67</td>
<td>5.79</td>
<td>4.67</td>
</tr>
<tr>
<td>Quality (Aggregated scores)</td>
<td>43.14</td>
<td>45.9</td>
<td>39.14</td>
</tr>
</tbody>
</table>
The performance outcomes collected in the CII study was limited to cost, schedule, and quality;

The focus of CII was mainly on delivery methods while recent studies showed that team selection and contract methods can also considerably affect the project performance.
Goals and Objectives

Objective

✓ To determine the role of project delivery methods and team integration in project success.

Outcome

✓ A suite of empirical guides to successful owner practices regarding roles, team integration, team behavior, delivery method, procurement method, and project performance.

Impacts

✓ Providing a repeatable process for making key projects decisions.
✓ Allowing owners to select delivery methods, project teams and contracting methods that offer the greatest likelihood of success.
✓ Improving transparency of decision-making process regarding delivery method.
Research Methods

Project Organization

- **Delivery method**
 - (Design-Bid-Build, CM at Risk, Design-Build, IPD)
- **Contract terms**
 - (Lump Sum, Cost Plus, GMP)
- **Team selection**
 - (Low Bid, Prequalified Bid, Negotiated)

Project Execution

Rank	**Processes**	**Technologies**	**Behaviors**
 1 | Prequalification of team | BIM uses | Open book accounting |
 2 | BIM execution planning | File sharing systems | Shared risk and reward |
 3 | Partnering/team building | Modularized designs | Joint project management |
 4 | Co-location of team | Communication latency | Communication formality |
 5 | Lean decision-making tools | File to fabrication | Level of trust |
 6 | Risk management | BIM ownership | Clarity of leadership |
 7 | Process facilitator | Facility management | Contingency management |
 8 | Offsite prefabrication | Last Planner | Goal commitment |
 9 | Decision-making procedure | Electronic design reviews | Prior team relationship |
10 | Design responsibility | Visual management | Multi-trade prefabrication |

Project Success

- **Budget performance**
 - (Unit cost, Cost growth)
- **Schedule performance**
 - (Schedule growth, Delivery speed, Intensity)
- **Facility quality**
 - (System, Aesthetics, Functionality)
Research Methods (*Outcomes*)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Data Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project cost growth (%)</td>
<td>Final project cost (D+C)</td>
</tr>
<tr>
<td></td>
<td>Awarded project cost (D+C)</td>
</tr>
<tr>
<td>Construction cost growth (%)</td>
<td>Final construction cost (C)</td>
</tr>
<tr>
<td></td>
<td>Awarded construction cost (C)</td>
</tr>
<tr>
<td>Final project unit cost ($/SF)</td>
<td>Final project cost (D+C)</td>
</tr>
<tr>
<td></td>
<td>Gross square footage</td>
</tr>
<tr>
<td>Project schedule growth (%)</td>
<td>Contracted and as-built design start</td>
</tr>
<tr>
<td></td>
<td>Contracted and as-built substantial completion</td>
</tr>
<tr>
<td>Construction schedule growth (%)</td>
<td>Contracted and as-built design start</td>
</tr>
<tr>
<td></td>
<td>Contracted and as-built substantial completion</td>
</tr>
<tr>
<td>Delivery speed (SF/MO)</td>
<td>Gross square footage</td>
</tr>
<tr>
<td></td>
<td>As-built design start</td>
</tr>
<tr>
<td></td>
<td>As-built substantial completion</td>
</tr>
<tr>
<td>Intensity ($/SF/MO)</td>
<td>Final project cost (D+C)</td>
</tr>
<tr>
<td></td>
<td>As-built design start</td>
</tr>
<tr>
<td></td>
<td>As-built substantial completion</td>
</tr>
</tbody>
</table>

Full list in questionnaire
SECTION 9: TEAM CHARACTERISTICS & BEHAVIOR

Indicate the owner’s type of relationship with the project team:

- Architect/Designer: □ First Time □ Repeat
- GC, CM/GC or DB: □ First Time □ Repeat

Evaluate each of the following attributes of your project team:

- Team’s prior experience as a unit ($1=Low$, $6=High$):
 - Low: □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 High
- Team chemistry ($1=Poor$, $6=Excellent$):
 - Poor: □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 Excellent

Relative to your expectations, denote the frequency of staff turnover within the project team ($1=Low$, $6=High$):

- Low: □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 High

When was end-user feedback provided to the project (check all that apply)?

- Inception
- Conceptual
- DD
- Construction
- Programming
- SD
- CD
- Operation
Specify when each project participant was **co-located** or sharing a workspace with other team members (*check all that apply)*:

<table>
<thead>
<tr>
<th></th>
<th>Owner</th>
<th>Architect/Designer</th>
<th>CM/GC</th>
<th>MEP Contractors</th>
<th>Structural Contractors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluate the communication among the project team:

Formality of communication (*1=Informal, 6=Formal*):

- Informal: 1 2 3 4 5 6 Formal

Timeliness of communication (*1=Never on time, 6=Always on time*):

- Never: 1 2 3 4 5 6 Always

How often did the project team compromise on project issues (*1=Never, 6=Frequently*)?

- Never: 1 2 3 4 5 6 Frequently

Did the project team manage a shared, internal contingency usable by both design and construction team members? **Yes** **No**

Who participated in setting goals for the project (*check all that apply*)?

- Owner
- Architect/Designer
- GC, CM/GC or DB
- MEP Contractors
- Structural Contractors
- Other: _____________________________

To what extent were all project team members committed to the same project goals (*1=Very Weakly, 6=Very Strongly*):

- Weakly: 1 2 3 4 5 6 Strongly
SECTION 10: PROCESS AND TECHNOLOGY

Number of design charrettes held by the project team:

Who was involved with the design charrettes (check all that apply)?
- Owner
- GC, CM/GC or DB
- Structural Contractors
- Architect/Designer
- MEP Contractors
- Other: ____________________________

How was Building Information Modeling (BIM) used (check all that apply)?
- BIM was not used
- MEP Coordination/Clash Detection
- Architectural Design
- 4D Scheduling
- Engineered Systems Design
- Facility Management

Who was involved in developing a BIM execution plan (check all that apply)?
- No BIM execution plan was developed for this project
- Owner
- GC, CM/GC or DB
- Structural Contractors
- Architect/Designer
- MEP Contractors
- Other: ____________________________

To what extent was electronic file and information sharing used by the project team (1=Primarily paper-based, 6=All electronic)?

Paper-based
- 1
- 2
- 3
- 4
- 5
- 6 **Electronic**

List any lean tools or approaches consistently used by the project team:

Evaluate the level of offsite fabrication and modularization used on the project (1=Entirely built onsite, 6=Entirely built offsite):

Onsite
- 1
- 2
- 3
- 4
- 5
- 6 **Offsite**

Did any prefabricated or modularized system on the project involve multiple trades? Yes No
Research Methods (Data Collection)

Questionnaire

- Call back contractor
- Call back owner
- Sharing screen
- Developing FAQ sheet
- Developing call-back guideline

Database

Owner's Guide to Maximizing Success in Integrated Projects

- Project ID: DE-003-G1
- Name of the Code: Defuald

1. Project Characteristics
2. Organization
3. Cost
4. Schedule
5. Quality
6. Safety
7. Sustainability

- Design start date (notice to proceed): 4/1/2004
- Construction start date (notice to proceed): 5/1/2004
- Construction End Date (substantial completion): 9/1/2006
- Facility operational date: 9/1/2006

Owner's Guide to Maximizing Success in Integrated Projects

- Project ID: DE-003-G1
- Name of the Code: Defuald

10. Team Characteristics
11. Team Behavior and Interactions
12. Process and Technology

- Q10-1: Individual experience of key team members with similar facilities:
 - Owner: 6 (High)
 - Designer: 6 (High)
 - Contractor: 5
 - Mechanical Contractor: 5
 - Electrical Contractor: 5
 - Structural Steel Contractor: 5
 - Concrete Contractor: 5

- Q10-2: Team experience of key members on your project's delivery system:
 - Owner: 7 (High)
 - Designer: 7 (High)
 - Contractor: 7
 - Mechanical Contractor: 7
 - Electrical Contractor: 7
 - Structural Steel Contractor: 7
 - Concrete Contractor: 7
Types of Data Collected

Categorical

- **Ordinal**: Naturally ordered as increasing or decreasing
 - Examples: 6pt rating scales, Level of LEED certification, Phase of involvement

- **Nominal**: Non-ordered
 - Examples: Delivery method, Contract terms, Owner type

Continuous

- Ordered with meaningful intervals
 - Examples: Cost growth, Schedule growth, Delivery speed
1. **Correlation**

Tests for directional relationship between 2 variables

May be positive or negative

Examples:
- Team chemistry with cost growth
- Number BIM uses with final project unit cost

2. **Difference in means**

Tests for equal means

Examples:
- Mean cost growth by owner type
- Final project unit cost by building type
Sample Demographics

By building type and building size:

- Recreation
- Municipal
- Hotel
- Office
- Educational
- Industrial
- Health Care
- Other

Building Size (ft²)

- < 50,000
- 50,000 - 150,000
- 150,000 - 350,000
- > 350,000

Percentage of Sample

Building Type

Private | Public
More Sample Demographics

By delivery method, builder selection process and builder payment terms:

Builder Selection Process

Builder Payment Terms

Delivery Method
Bivariate Correlations, all variables

Spearman Rho: Size estimation and significance

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Project cost growth</td>
<td></td>
</tr>
<tr>
<td>2. Construction cost growth</td>
<td></td>
<td>M***</td>
<td></td>
</tr>
<tr>
<td>3. Schedule growth</td>
<td></td>
<td>--</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>4. Unit cost (Log)</td>
<td></td>
<td>--</td>
<td>S</td>
<td>--</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5. Intensity (Log)</td>
<td></td>
<td>-S</td>
<td>--</td>
<td>--</td>
<td>L***</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6. Delivery speed (Log)</td>
<td></td>
<td>--</td>
<td>--</td>
<td>-S**</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7. Administrative burden</td>
<td>S</td>
<td>S*</td>
<td>--</td>
<td>S**</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Staff turnover</td>
<td>S</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>S*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Prior experience as unit</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>-S</td>
<td>S</td>
<td>S</td>
<td>-S</td>
<td>--</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Team chemistry</td>
<td>-S</td>
<td>--</td>
<td>-M***</td>
<td>--</td>
<td>S</td>
<td>S</td>
<td>-S**</td>
<td>-M***</td>
<td>S**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Frequency of compromise</td>
<td>S*</td>
<td>-S</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>S</td>
<td>--</td>
<td>--</td>
<td>S*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Timeliness of communication</td>
<td>--</td>
<td>-S</td>
<td>-S</td>
<td>-S</td>
<td>--</td>
<td>--</td>
<td>-S*</td>
<td>-M***</td>
<td>S</td>
<td>L***</td>
<td>S*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Formality of communication</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-S*</td>
<td>--</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Electronic documentation</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>--</td>
<td>S</td>
<td>S</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Number of BIM uses</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>M***</td>
<td>S**</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>M**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Number of design charrettes</td>
<td>-S*</td>
<td>--</td>
<td>--</td>
<td>M**</td>
<td>--</td>
<td>S</td>
<td>S</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-S*</td>
<td>M**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Offsite prefabrication</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S</td>
<td>--</td>
<td>S</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S</td>
<td>--</td>
<td>-S</td>
<td>S*</td>
<td>M**</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Size estimation:
- None (--): 0.0 to 0.09
- Small (S): 0.29 to 0.10
- Medium (M): 0.30 to 0.49
- Large (L): 0.50 to 1.0

Significance (two-tailed):
- *** $p < 0.001$
- ** $p < 0.01$
- * $p < 0.05$
Bivariate Correlations, performance only

Spearman Rho: Size estimation and significance

<table>
<thead>
<tr>
<th>Variables</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Administrative burden</td>
<td>S</td>
<td>S*</td>
<td>--</td>
<td>S**</td>
<td>-S</td>
<td>--</td>
</tr>
<tr>
<td>8. Staff turnover</td>
<td>S</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9. Prior experience as unit</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>-S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>10. Team chemistry</td>
<td>-S</td>
<td>--</td>
<td>-M***</td>
<td>--</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>11. Frequency of compromise</td>
<td>S*</td>
<td>-S</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>S</td>
</tr>
<tr>
<td>12. Timeliness of communication</td>
<td>--</td>
<td>-S</td>
<td>-S</td>
<td>-S</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>13. Formality of communication</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>14. Electronic documentation</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>--</td>
<td>--</td>
<td>S</td>
</tr>
<tr>
<td>15. Number of BIM uses</td>
<td>--</td>
<td>--</td>
<td>-S</td>
<td>M***</td>
<td>S**</td>
<td>--</td>
</tr>
<tr>
<td>16. Number of design charrettes</td>
<td>-S*</td>
<td>--</td>
<td>--</td>
<td>M**</td>
<td>--</td>
<td>S</td>
</tr>
<tr>
<td>17. Offsite prefabrication</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>S</td>
<td>--</td>
<td>S</td>
</tr>
</tbody>
</table>

Size estimation:
- None (--) 0.0 to 0.09
- Small (S) 0.29 to 0.10
- Medium (M) 0.30 to 0.49
- Large (L) 0.50 to 1.0

Significance (two-tailed):
- *** $p < 0.001$
- ** $p < 0.01$
- * $p < 0.05$
Case Study

Characteristics:

- One of the most advanced television studio in the country.
- The owner worked with a developer for 2 years, but did not get anywhere.
- Total cost of 71M

Excellent budget and schedule performance!

Success factors

- The mechanical, electrical, plumbing, glazing, concrete and earthwork were selected before the RFQ as DB assist.
- Revit was used from day 1 of programming, blocking & stacking throughout the entire design and construction process.
- During the design phase, the design team met (charrettes) with end users frequently (every Monday).
- Project schedule was updated daily and the BIM updated weekly.
- Last Planner was used from early phase of the project.
Case Study

➢ Characteristics:
 ▶ One of the most advance television studio in the country.
 ▶ The owner worked with a developer for 2 years, but did not get anywhere.
 ▶ Total cost of 71M

It was the right team.

➢ Success factors
 ▶ The mechanical, electrical, plumbing, glazing, concrete and earth work were selected before the RFQ as DB assist.
 ▶ Revit was used from day 1 of programming, blocking & stacking throughout the entire design and construction process.
 ▶ During the design phase, the design team met (charrettes) with end users frequently (every Monday).
 ▶ Project schedule was updated daily and the BIM updated weekly.
 ▶ Last Planner was used from early phase of the project.
Conclusions

✓ Team environment is related to project success:
 1) **Communication timeliness** with construction cost growth;
 2) **Team chemistry** with overall schedule growth; and
 3) **Administrative burden** with construction cost growth and final unit cost.

✓ Team building
 1) **Personnel matters**
 2) **Team A vs. Team B**

✓ Avoiding bandwagon effect
Thank you for your time.