“Not So Difficult” Approaches for Building Science Education

Patrick H. Huelman
University of Minnesota
&
Samuel Taylor
Consultant
Driving Goal

➢ To improve building science education
 • Quantity
 • Quality

➢ In degree programs for building professionals
 • Associate
 • Undergraduate
 • Professional
 • Graduate
Desired Outcome

➢ To ensure all students in building design, engineering, construction, and operations will graduate with:
 • a substantive “building science fundamentals” course early in their program,
 • solid “building science” concepts infused into their traditional courses, and
 • access to specialized, in-depth building science coursework.
Mission of Joint Committee for Building Science Education

- Support transformation of the education and training of the design and construction industry, such that its professionals:
 - Are educated, trained, and certified in building science and related advanced design and construction management practices;
 - Can routinely design, build (renovate and fix), and operate quality, high performance buildings that are safe, healthy, durable, comfortable and very energy efficient; and
 - Will provide the highest value to their clients.

January 2016 Joint Committee on Building Science Education
Background

- Toronto (ASTM/NIBS/JCBSE) Workshop and previous DOE & HUD workshops identified:
 - Strong interest in building science education,
 - Good examples of current building science programs,
 - Solid existing building science teaching resources, but
 - Substantive academia constraints and challenges.

- Subsequent focus on potential solutions:
 - Move from addition to integration,
 - Move from stand alone to infusion,
 - Move from “easy button” to “not so difficult”.

January 2016

Joint Committee on Building Science Education
Important Themes

- Using a broad definition for “building sciences”.
- Focus => Building science KSA’s needed to plan, design, analyze, construct/renovate, and commission quality, high-performance buildings.
- Priority => Health, Safety, Durability, IAQ
 - Ensure no harm and no lawsuits;
 - Everything else (including daylighting, passive, green, sustainability) must fit under this overarching priority.

Note: Core competencies for A/E Firm New Hires and DOE BSE Guidelines are available as handouts on table.
Pathways for Success

- Support infusion of building science into traditional coursework and teaching resources,

- Promote a dedicated building science fundamentals course, and

- Encourage special higher level building science technical electives.
Pathways for Success

- Provide easy access to building science resources
 - Promote excellence in building science teaching texts and support materials.

- Ensure best practices
 - Up-to-date access to research results
 - Connection to real world applications.

- Support graduate building science programs to increase future teaching capacity.
Great Progress (Post-Toronto)

- Affirming opportunities for “infusion”
 - Traditional courses; associated teaching resources
- Quality resources for teaching building science
 - Currently available or under development
- Improved access to building science research & best practices
 - DOE Building America Solution Center
 - Other: ASHRAE, NIBS, BSC, BSL, Joint Committee
- Excellent Experiential Learning Opportunities
 - Race to Zero, etc.

January 2016
Prioritization of Building Science

Key Assumptions

- Priority building science requirements
 - Health & safety, building durability, IAQ
- Priority damage functions (buildings & people)
 - Fire, smoke, and structure
 - critical, but addressed by codes and established practice
 - Moisture Management (Water, Water, and Water)!
 - critical, but currently underrepresented
 - Indoor Environmental Quality
- Effectively dealing with damage functions
 - risk tolerant designs and work procedures (e.g., QM)

January 2016

Joint Committee for Building Science Education
Conveying Key Building Science Concepts
Heat & Mass Transfer/Moisture Transport/IAQ

- Can critical concepts be fit into existing courses?
 - Heat transfer, 2nd Law of Thermodynamics (simplified)
 - Psychrometrics, relative humidity (RH), dew point
 - Prioritized moisture transport mechanisms
 - Requirements for air flow
 - Functions of the enclosure; esp. environmental separation
 - Continuity of control layers; verification with pen test
 - Understanding hygrothermal performance of enclosures, including performance consequences of material/placement
 - HVAC systems; esp. ventilation and make-up air

- Within one or two modules is a huge challenge?
 - Currently a “work in progress”, but has been done!

January 2016
Building Science Resources
(Partial Listing)

- Key Textbooks/References
 - ASHRAE Handbook of Fundamentals
 - High Performance Enclosures: Straube, J.
 - Understanding Psychrometrics: Gatley, D.
 - Water in Buildings: Rose, W.
 - Currently under development
 - Building Science Fundamentals: Lstiburek, J.
Building Science Resources
(Partial Listing)

Online Resources

- DOE Building America Solution Center
 - https://basc.pnnl.gov/
- Building Science Corporation
 - www.BuildingScience.com/Information
- Building Science Labs
 - www.buildingsciencelabs.com/the-library/
- Joint Committee Website
 - www.BuildingScienceEducation.net
- SBSE Website
 - www.sbse.org/resources/
B.S. Infusion & Fundamentals
(Research Underway)

- **Step 1: Identify Traditional Target Courses**
 - Obtain syllabi from leading schools
 - Identify required & recommended textbooks
 - Identify supplemental teaching materials
 - Review for gaps in key building science topics
 - Identify possible approaches to convey key concepts
 - Initial test of infusion approaches (work in progress)
B.S. Infusion & Fundamentals
(Research Underway)

➢ Step 2: Review Teaching Materials for Courses
 • Work with key publishers to obtain identified texts
 • Wiley
 • Pearson/Prentiss Hall
 • ASHRAE
 • Review textbooks for treatment of critical building science topics
 • Review textbooks and online resources for supplemental building science materials
B.S. Infusion & Fundamentals
(Research Underway)

- Step 3: Support Modification to Courses & Texts
 - Work with publishers and authors to identify process/timelines for updating text or supplemental materials
 - Work with authors of building science resources
 - within texts, articles, supplemental materials
 - identify gaps that need to be filled by new resources
 - Need to integrate “best treatment” of key concepts into traditional modules (or for adding new modules)
B.S. Infusion & Fundamentals (Research Underway)

- Step 4: Process to Enhance Traditional Resources
 - Peer review of common textbooks
 - identify opportunities for enhancements, clarifications, corrections, etc.
 - More frequent printings of textbooks
 - opportunity for building science supplements
 - Update/expand online supplemental material
 - Publish peer-reviewed supplements on the JCBSE website

Workshop Co-Hosts
- NIBS/BETEC
- ASTM
- JCBSE

January 2016

Joint Committee for Building Science Education
Priority Targets for B.S. Infusion

➢ Environmental Controls/Systems I & II
 • Typically touches on heat transfer and air flow
 • Generally includes discussion of RH & IAQ
 • Popular references/texts include:
 • Mechanical & Electrical Equipment for Buildings: Grondzik, W., Kwok, A., Stein, B., Reynolds, J.
 • Heating, Cooling, Lighting: Sustainable Design Methods for Architects: Lechner, N.
Priority Targets for B.S. Infusion

- Materials & Methods I & II (aka Construction Technologies I & II)
 - Typically touches on enclosure design
 - Can include discussion of moisture, RH
 - Popular references/texts include:
 - Building Construction: Mehta, M.
 - Building Construction Illustrated: Ching, F.
Priority Targets for B.S. Infusion

➢ Other Potential Course Targets
 • Construction Documentation
 • Project Management
 • Sustainable Design

January 2016
Joint Committee on Building Science Education
Building Science Fundamentals
Dedicated Stand Alone Course

- Requirement or technical elective
- Provides adequate coverage of key concepts & principles
 - Heat & mass transfer
 - Hygrothermal performance of enclosures
 - HVAC, IAQ, etc.
- Variations have been taught at:
 - U-MN, U-IL, Waterloo, Penn State, Leuven, etc.
- Popular textbooks & resources
 - High Performance Enclosures
 - ASHRAE Handbook of Fundamentals
 - Building Science for Building Enclosures
 - Online Articles: BSC, BSL, BA Solution Center, etc.
Building Science Fundamentals
U-MN “Hygrothermal” Experience

- Establish Context, Perspective, and Principles
 - Lstiburek: “5 Fundamental Changes”

- Module 1: Heat Transfer
 - Temperature profile (hand calcs/spreadsheet)

- Module 2: Moisture Transport
 - Enhanced Glaser (Dew Point) Method (spreadsheet)

- Module 3: Material Storage
 - 1-D coupled heat & moisture analysis (WUFI software)

Note: This approach was successfully applied by RTZ team.

January 2016
Joint Committee on Building Science Education
DOE Race to Zero
Building Science Experiential Learning

➢ To date, 54 schools, 100 teams, and several hundred students and faculty have participated

 • Each RTZ team has participated in a mandatory “Building Science Fundamentals” training session.
 • All designs must meet DOE ZERH requirements.
 • Homes that are so efficient a small renewable system can offset all or most energy needs.

➢ Subscribe your “potential interest” for 2017 RTZ

 • Review the benefits
 • Access to key resources
Imagine the Impact

• If the RTZ building science resources were available for the other student competitions.
• Shouldn’t their designs reflect this level of building science and best practices?

Next Penn State will address “Building Science Education as an Integral Part of Project-Based Learning”
Good News

- Significant progress is being made towards larger building science education goals and outcomes.

- Several short-term successes:
 - Demonstrated that it is “not so difficult” to infuse B.S. into existing courses,
 - Uncovered a wealth of building science teaching resources that are (or will be) readily available,
 - Several experiential learning opportunities to reinforce building science best practices.
Our Challenge

➢ Short-Term Objectives
 • Continue to support “building science infusion”
 • Increase, improve, share building science resources
 • Expand experiential learning opportunities

➢ Medium-Term Targets
 • Push for revision of curriculum, credentials, accreditation, etc. to incorporate building science

➢ Long-Term Goals
 • Support graduate education and research in building science, so we will have great teachers and mentors

January 2016

Joint Committee on Building Science Education
Thank You

- Be sure to visit the JCBSE website
 - www.BuildingScienceEducation.net

- Contact information
 - Patrick H. Huelman
 - University of Minnesota
 - 203 Kaufert Lab; 2004 Folwell Ave,
 - St. Paul, MN 55108
 - 612-624-1286; phuelman@umn.edu
 - Samuel Taylor
 - Energy & Resource Efficiency
 - Samuel.taylor.sr@gmail.com
DOE Race to Zero
Key Benefits (video)