The CISR Business Process Project: Balancing the Ideal with the Pragmatic to Value Resilience Incentives

Jerry P. Brashear, Paula Scalingi and Ryan Colker

January 2016
Incentives Have the Potential to Deal with “Tragedy of the Commons”

- **Tragedy of the commons:**
 - When an investment decision benefits (or costs) both the decision-maker and the public and/or other stakeholders,
 - And the benefits to the decision-maker are insufficient to justify the investment,
 - The decision-maker declines to invest,
 - And the benefits to the public & outside stakeholders – externalities or “co-benefits” are foregone

- This accounts for much of the under-investment in resilience and security

- Incentives present the opportunity to make the investment sufficiently attractive to the decision-maker to make the investment, benefitting all
Resilience Incentives Require Risk Analysis

- Most incentives establish a grantor-recipient relationship
- Each party needs to evaluate the impacts of the incentive, respectively, from their own perspectives
- **Recipient**: Does the incentive make an otherwise rejected option acceptably cost-effective? Or is it just a “bonus”?
- **Grantor**:
 - Does the incentive induce enough **changed** behavior to justify its aggregate cost?
 - How many recipients would make the desired decisions **without** the incentives but take it anyway (“**free riders**”)?
- If the objective of the incentive is resilience, all these decisions require risk/resilience analysis
Critical Infrastructure Security & Resilience Risk Management Process (CISR-RMP) Project

✦ Project Goal: Apply business process engineering (BPE) to CISR risk/resilience management

✦ Goal of CISR-RMP: enable localities, lifeline infrastructures, other enterprises and regional communities to:

- Cooperatively assess all-hazards risk of human & financial losses & disruptions to vital services, direct & indirect;

- Rationally value & allocate available resources to options – with and without incentives – to advance CISR as much as possible under constraints; and

- Reliably evaluate the effectiveness of these initiatives in reducing risk and fragility.
Structure of the CISR-RMP Project

- Federal policy on CI & regional risk/resilience measurement & management
- Local risk/resilience processes currently used & their constraints
- Federal tools & methods for lifelines security & resilience

Objectives
- CISR-RMP design specifications
- BPE design CISR-RPM & gaps
- CISR-RPM implementation strategy
- Road map to improving CISR-RMP
Policy-Based Design Principles

NIPP 2013 and Supplement require:

- CI risk be estimated by identifying what assets are critical, accounting for interdependencies,
- Threat, vulnerability and consequences be analyzed in ways that support rational choices among action options,
- The selected options be implemented and their performance be evaluated.”

NIPP 2013 Supplement’s additions:

- Documented
- Reproducible
- Defensible

DHS Risk Management Fundamentals – DHS doctrine:

- Unity of Effort
- Transparency
- Adaptability & Practicality
- Customization
User Situation & Needs

- Little risk management at the local/regional level, e.g.,
 - “State and Federal recovery funds will always cover disasters”
 - “It’s irrational to spend 100¢ dollars on uncertain events now, not 25¢ dollars on actual events later, IF & when they happen”
 - GCs advise that “ignorance of risk” is a liability defense

- What true risk analysis is going on is
 - Largely proprietary and confidential one-offs
 - Conducted by the largest organizations, or
 - Federally stimulated and compliance-oriented, and
 - Siloed from other management processes

- None of the utilities or agencies analyzes dependencies & interdependencies, but all are acutely aware of them

- Resilience per se is not analyzed, but seen as outcome of risk reduction
Potential User Outlook

Virtually all respondents were keenly interested in an improved approach, especially if:

– Proposed/required by external authority
– Liability issues resolved, e.g., SAFETY Act extended
– Simple, free, open, provide immediate value to decision-makers
– Conducted by on-site staff with no- or low-cost technical assistance
– Common analysis & comparable data OK; common solutions are not
– One stated he was planning to integrate risk management with asset management and capital planning
Review of Federally Sponsored CI Risk Tools

- 21 federally sponsored and nominated tools examined
 - 10 were eliminated
 - 3 estimated important risk elements (e.g., future weather), but not risk or resilience
 - 7 were survey-based indicators, useful for benchmarking, but not risk-reduction option valuation
 - 11 were examined in more depth relative to their ability to support option valuation by local and regional CI and public decision-makers under budget constraints

- None was found to be complete, but a few show great promise
Review of Federal Lifeline CISR Tools
Review of Federal Lifeline CISR Tools

Design Requirements

Scales / Methods, Processes & Tools (Sponsors)

- Sort/rank by Criticality
- Rank by Risk
- Decide to Design Options
- Value Options
- Rationalize Budget
- Evaluate Performance
- Regional Depend. Anal.
- Aggregate to Reg., St., US

Key Decision Support
Review of Federal Lifeline CISR Tools

<table>
<thead>
<tr>
<th>Output</th>
<th>Key Decision Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional Risk</td>
<td>1.0</td>
</tr>
<tr>
<td>Owners’ Risk</td>
<td></td>
</tr>
<tr>
<td>Public’s Regional Risk</td>
<td></td>
</tr>
<tr>
<td>Resilience Metric</td>
<td></td>
</tr>
<tr>
<td>Option Value (Net Benefit)</td>
<td></td>
</tr>
</tbody>
</table>

Scales / Methods, Processes & Tools (Sponsors)

Conditional Risk | T = 1.0

Output

- Owners’ Risk
- Public’s Regional Risk
- Resilience Metric
- Option Value (Net Benefit)
Review of Federal Lifeline CISR Tools
Ratio Scales: counting

- Equal intervals
- True zero
- All arithmetic functions allowed
- Dollar-based benefit/cost analysis supported

Ordinal Scales: ordering, ranking

- Unequal or unknown intervals
- No necessary zero
- Limited arithmetic functions allowed
- No true dollar benefit/cost analysis
Review of Federal Lifeline CISR Tools

Design Requirements

<table>
<thead>
<tr>
<th>Scales / Methods, Processes & Tools (Sponsors)</th>
<th>Focus</th>
<th>Scenarios</th>
<th>Terms</th>
<th>Output</th>
<th>Key Decision Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratios Scale Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISR Risk Management Process Design: Design Objective</td>
<td>Lifelines, Em. Mgt., All</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ordinal Scale Methods
Review of Federal Lifeline CISR Tools

Design Requirements

<table>
<thead>
<tr>
<th>Design Objective</th>
<th>Focus</th>
<th>Scenarios</th>
<th>Terms</th>
<th>Output</th>
<th>Key Decision Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifelines, Emer. Mgmt., All</td>
<td>Non-Standardized</td>
<td>Threat Likelihood</td>
<td>Consequences</td>
<td>Outages</td>
<td>Dependencies</td>
</tr>
<tr>
<td>Dams (USACE)</td>
<td>Standardized</td>
<td>1</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Bridges (FHWA)</td>
<td>Standardized</td>
<td>2</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Tunnels (TSA)</td>
<td>Standardized</td>
<td>2</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>J100-10 (EPA, IP with AWWA); and Nashville regional field test (S&T)</td>
<td>Standardized</td>
<td>2</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

Ratio Scale Methods

- **CISR Risk Management Process Design:** Life, Emer. Mgmt., All
- **Common Risk Model – Dams (USACE):** Dams
- **Component Level Risk Mgt for Bridges (FHWA):** Bridges
- **Component Level Risk Mgt for Tunnels (TSA):** Tunnels
- **Costing Asset Protections for Transportation Agencies (CAPTA, DOT):**
- **J100-10 (EPA, IP with AWWA); and Nashville regional field test (S&T):** Water, Waste, water, Elect., etc.
- **J100-15 (AWWA), in progress:** Water, Waste, water, Elect., etc
- **Threat & Hazard Identification & Risk Assessment (THIRA, FEMA):** Community Capabilities

Ordinal Scale Methods

Notes:
1. Scenarios: A = all; M = malevolent only; N = natural only
2. CRM uses $T = 1.0$ for single-dam assessments, but uses an “adversary value model” $T = F(V,C)(\text{dam attack})$ to establish a relative risk for a set of dams.
3. Risk is conditional risk, assuming threat likelihood $= 1.0$.
4. Threat likelihood is calculated by a “proxy” method based on RAND/RMS and threat-asset V and C to model adversary selection of asset and attack mode.
5. Dependencies are modeled as loss of supply of critical resources, including utilities, personnel, supplies, and proximity, but are not analyzed across infrastruc
Review of Federal Lifeline CISR Tools

Design Requirements

<table>
<thead>
<tr>
<th>Scales / Methods, Processes & Tools (Sponsors)</th>
<th>Focus</th>
<th>Scenarios</th>
<th>Terms</th>
<th>Output</th>
<th>Key Decision Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio Scale Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CISR Risk Management Process Design: Design Objective</td>
<td>Lifelines, Em. Mgt., All</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Risk Model – Dams (USACE)</td>
<td>Dams</td>
<td>M</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component Level Risk Mgt for Bridges (FHWA)</td>
<td>Bridges</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component Level Risk Mgt for Tunnels (TSA)</td>
<td>Tunnels</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costing Asset Protections for Transportation Agencies (CAPTA, DoT)</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J100-10 (EPA, IP with AWWA); and Nashville regional field test (S&T)</td>
<td>Water, Waste-water, Elect., etc.</td>
<td>A</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>J100-15 (AWWA), in progress</td>
<td>Water, Waste-water, Elect., etc</td>
<td>A</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Threat & Hazard Identification & Risk Assessment (THIRA, FEMA)</td>
<td>Community Capabilities</td>
<td>A</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ordinal Scale Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime Security Risk Method (USCG)</td>
<td>Port</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Energy Assessments (DOE)</td>
<td>Electricity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voluntary Chemical Assessment Tool (VCAT, IP)</td>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulnerability Assessment Framework (FHWA)</td>
<td>Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulnerability Assessment Scoring Tool (VAST, FHWA)</td>
<td>Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree Satisfied

- Required
- Fully
- Partially

Notes:
- Scenarios: A = all; M = malevolent only; N = natural only
- 1. CRM uses $T = 1.0$ for single-dam assessments, but uses an “adversary value model” $T = F(V,C)\text{dam attack}$ to establish a relative risk for a set of dams.
- 2. Risk is conditional risk, assuming threat likelihood = 1.0.
- 3. Threat likelihood is calculated by a “proxy” method based on RAND/RMS and threat-asset V and C to model adversary selection of asset and attack mode.
- 4. Dependencies are modeled as loss of supply of critical resources, including utilities, personnel, supplies, and proximity, but are not analyzed across infrastruc
Review of Federal Lifeline CISR Tools

Design Requirements

<table>
<thead>
<tr>
<th>Ratio Scale Methods</th>
<th>Focus</th>
<th>Scenarios</th>
<th>Terms</th>
<th>Output</th>
<th>Key Decision Support</th>
<th>Apparent Maturity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISR Risk Management Process Design: Design Objective</td>
<td>Lifelines, Em. Mgt., All</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Common Risk Model – Dams (USACE)</td>
<td>Dams</td>
<td>M 1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Component Level Risk Mgt for Bridges (FHWA)</td>
<td>Bridges</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Component Level Risk Mgt for Tunnels (TSA)</td>
<td>Tunnels</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Costing Asset Protections for Transportation Agencies (CAPTA, DoT)</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>J100-10 (EPA, IP with AWWA), and Nashville regional field test (S&I)</td>
<td>Water, Waste-water, Elect., etc.</td>
<td>A 3</td>
<td></td>
<td>4</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>J100-15 (AWWA), in progress</td>
<td>Water, Waste-water, Elect., etc</td>
<td>A 3</td>
<td></td>
<td>4</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>Threat & Hazard Identification & Risk Assessment (FHWA, FEMA)</td>
<td>Community Capabilities</td>
<td>A</td>
<td></td>
<td>2</td>
<td></td>
<td>3.5</td>
</tr>
</tbody>
</table>

Ordinal Scale Methods

Maritime Security Risk Method (USCG)	Port					3
State Energy Assessments (DOE)	Electricity					3
Voluntary Chemical Assessment Tool (VCAT, IP)	Chemical					3
Vulnerability Assessment Framework (FHWA)	Highways					3
Vulnerability Assessment Scoring Tool (VAST, FHWA)	Highways					3

Degree Satisfied

- **Required**
- **Fully**
- **Partially**

Notes:

1. Scenarios: A = all; M = malevolent only; N = natural only
2. CRM uses $T = 1.0$ for single-dam assessments, but uses an "adversary value model" $T = F(V,C)_{\text{dam attack}}$ to establish a relative risk for a set of dams.
3. Risk is conditional risk, assuming threat likelihood = 1.0.
4. Threat likelihood is calculated by a "proxy" method based on RAND/RMS and threat-asset V and C to model adversary selection of asset and attack mode.
5. Dependencies are modeled as loss of supply of critical resources, including utilities, personnel, supplies, and proximity, but are not analyzed across infrastructures.
5. Measure Effectiveness

E.2 Enterprise Infrastructure
- Define & screen assets based on mission
- Confirm threat-asset scenarios

E.3 Enterprise Risk Analysis
- Calculate baseline risk & fragility for enterprise (1)
- Aggregate enterprise baseline risk & fragility

E.4 Enterprise Implementation
- Define options to reduce risk & fragility
- Calculate option's net benefits
- Select options for enterprise funding, assess uncertainties
- Aggregate enterprise risk & fragility objectives
- Implement chosen options

E.5 Enterprise Effectiveness Measurement
 Outputs: Were chosen options implemented as planned?
 Outcomes:
 - Document actual events & exercises
 - Estimate actual enterprise & regional post-option risk & fragility for CISR progress
 - Aggregate actual enterprise risk & fragility

Each Participating Enterprise

(1) Risk = Threat Likelihood x Vulnerability x Consequences = R = T x V x C
Fragility = Threat Likelihood x Vulnerability x Outage = F = T x V x O
Where: Outage = Average Daily Unmet Demand x No. of Days
5. Measure Effectiveness

E.1 Enterprise Goals
- Negotiate info sharing
- Define & weight enterprise objectives
- Select threats & hazards

E.2 Enterprise Infrastructure ID
- Define & screen assets based on mission
- Confirm threat-asset scenarios

E.3 Enterprise Risk Analysis
- Calculate baseline risk & fragility for enterprise (1)
- Update enterprise & regional risk & fragilities for dependencies
- Aggregate enterprise baseline risk & fragility

E.4 Enterprise Implementation
- Define options to reduce risk & fragility
- Calculate options' net benefits
- Select options for enterprise funding, assess uncertainties
- Implement chosen options

E.5 Enterprise Effectiveness Measurement
- Outputs: Were chosen options implemented as planned?
- Outcomes:
 - Document actual events & exercises
 - Estimate actual enterprise & regional post-option risk & fragility for CISR progress
 - Aggregate actual enterprise risk & fragility

R.1 Regional Goals
- Organize regional coalition
- Develop information sharing protocol
- Define & weight regional objectives
- Select threats & hazards

R.2 Regional Infrastructure ID
- Define & screen essential regional systems
- Select threat-system scenarios

R.3 Regional Risk Analysis
- Analyze dependencies; confirm cascades
- Estimate regional CI baseline risk & fragility with dependencies
- Aggregate regional baseline risk & fragility

R.4 Regional Implementation
- Analyze dependencies; confirm cascades
- Estimate regional CI baseline risk & fragility
- Aggregate regional risk & fragility objectives
- Implement chosen options

R.5 Regional Effectiveness Measurement (Outcomes)
- Outputs: Were chosen options implemented as planned?
- Outcomes:
 - Document actual events & exercises
 - Estimate actual regional post-option risk & fragility for CISR progress
 - Aggregate actual regional risk & fragility

Each Participating Enterprise OR Incentive Grantor

Voluntary Regional Coalition

Information Sharing & Protection

R2 = TVC

Where: Outage = Average Daily Unmet Demand x No. of Days

Figure 2. NIPP 2013 CI Risk Management Framework & Summary of Regional CISR Risk Management Process

(1) Risk = Threat Likelihood x Vulnerability x Consequences = R = T x V x C
Fragility = Threat Likelihood x Vulnerability x Outage = F = T x V x O

Each Column is a Core Phase (e.g. 1. Set Goals & Objectives) and Each Arrow Represents an Activity (e.g. Incentives, Outputs, Outcomes, Dependencies)

Generated by Open Assistant.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1 Enterprise Goals</td>
<td>E.2 Enterprise Infrastructure ID</td>
<td>E.3 Enterprise Risk Analysis</td>
<td>E.4 Enterprise Implementation</td>
<td>E.5 Enterprise Effectiveness Measurement</td>
</tr>
<tr>
<td>• Negotiate info sharing</td>
<td>• Define & screen assets based on mission</td>
<td>• Calculate baseline risk & fragility for enterprise (1)</td>
<td>• Define options to reduce risk & fragility</td>
<td>Outputs: Were chosen options implemented as planned?</td>
</tr>
<tr>
<td>• Define & weight enterprise objectives</td>
<td>• Confirm threat-asset scenarios</td>
<td>• Update enterprise & regional risk & fragilities for dependencies</td>
<td>• Calculate option’s net benefits</td>
<td>Outcomes:</td>
</tr>
<tr>
<td>• Select threats & hazards</td>
<td></td>
<td>• Aggregate enterprise baseline risk & fragility</td>
<td>• Select options for enterprise funding; assess uncertainties</td>
<td>• Document actual events & exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G.1 National/State Goals</th>
<th>G.2 National/State Infrastructure ID</th>
<th>G.3 National/State Risk Analysis</th>
<th>G.4 National/State Implementation</th>
<th>G.5 National/State Effectiveness Measurement (Outcomes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Set CISR goals, policy & strategy, e.g., PPD, NIPP</td>
<td>• National criticality studies</td>
<td>• Analyze inter-regional baseline dependencies</td>
<td>• Analyze inter-regional dependencies w/ both funded & unfunded options</td>
<td>(1) Risk = Threat Likelihood \times Vulnerability \times Consequences = \text{R} = T \times V \times C</td>
</tr>
<tr>
<td>• Facilitate regional coalitions</td>
<td>• Advise on national hi-priority threat-asset pairs</td>
<td>• TT&AQA to enterprises & regions</td>
<td>• Provide grants & incentives for locally unfunded risk/fragility mitigation options</td>
<td>Fragility = Threat Likelihood \times Vulnerability \times Outage = \text{F} = T \times V \times O</td>
</tr>
<tr>
<td>• Develop & test CISR tools; train TT&AQA(2)</td>
<td></td>
<td>• Provide guidance on man-made threats & likelihood</td>
<td>• TT&AQA to enterprises & region</td>
<td>Where: Outage = Average Daily Unmet Demand \times No. of Days</td>
</tr>
<tr>
<td>• Provide intelligence to standard threat set</td>
<td></td>
<td>• Develop models</td>
<td>• Provide guidance on man-made threats & likelihood</td>
<td>\footnote{(1) Risk = Threat Likelihood \times Vulnerability \times Consequences = \text{R} = T \times V \times C}</td>
</tr>
</tbody>
</table>

\footnote{(2) TT&AQA = Training, Technical Assistance & Quality Assurance}
Bottom-up/Inside-out Implementation Approach

- Conventional “top-down/outside-in” implementations of Federal risk/resilience tools & methods have failed
- Proposed is a “bottom-up/inside-out” approach
 - Highly tailored to individual enterprises’ on-going processes
 - But with common logic, terms & basic process to yield results consistent & comparable enough for interdependencies & aggregation
 - Adapting on-going processes to incorporate risk/resilience analysis process as routine SOP
 - Integrated with regional organizing and regional analysis building
 - Incentives can be tailored to specific, local needs – minimizes “free riders” – maximizes incentive impact per dollar
- The process shouldn’t be a “tool,” but an open model process or standard, implemented through a variety of compliant tools and locally developed variations, with consistency and comparability
Anticipated Long-Term Outcomes

- Reduced risk & fragility – i.e., increased security & resilience of infrastructures, agencies, enterprises, regions
- Increased investment in security & resilience from diverse conventional & unconventional sources, incl. incentives – Rationally allocated to maximize benefits given budgets
- Enterprise & CI risk/fragility management become ingrained in management & governance – in asset management & budgeting
- Federal outlays for disaster relief decrease significantly
- Communities become resilient to climate change and all hazards
- Massive reductions in fatalities, losses & outages
Acknowledgement
Gratefully recognize project support by Contact HSHQDC-14-C-00089 Office of Policy, Planning and Budget, Office of Infrastructure Protection, US Dept. of Homeland Security

Contacts

- **Jerry P. Brashear**, PhD, The Brashear Group LLC
 - JerryBrashear@BrashearGroup.com
 - +1(301)704-8030

- **Paula L. Scalingi**, PhD, The Scalingi Group LLC
 - Pscalingi@SclingiGroup.com +1 (925) 683-3101 OR
 - Pscalingi@BayAreaCRDR.org +1 (925) 399-6229

- **Ryan M. Colker**, JD, National Institute of Building Sciences
 - Rcolker@NIBS.org
 - +1(202) 289-7800
Gap Analysis & Next Steps

- Current gaps in available tools – needed for application
 - Information sharing/protection protocol & model contract
 - Standard Threat/Hazard Set
 - Terrorism likelihood estimation by a Federal agency or committee
 - Analysis of cyber attacks on process controls & recovery times
 - Analysis of aging & overload risks (asset management systems)
 - Integrated modeling of CI interdependencies & economic activity
 - Sensitivity analysis of uncertainties that could change decisions
 - Outcomes evaluation by measuring risk/fragility reduction – governance & management – proof of concept

- Developmental Field Pilots: 3 or 4, after quick case studies

- Strategically deferred (for now) improvements
 - Full uncertainty capture of all key terms
 - Risk & fragility modeled by Monte Carlo simulation
 - Interdependencies modeled with full uncertainties & M.C. Post-event, real-time resource allocation & restoration sequencing