Theoretical collapse risks, ground motion return periods, and largest values from current and alternative MCE_R ground motion maps

Building Seismic Safety Council (BSSC) Project ‘17 Meeting on Acceptable Risk

Nicolas Luco, Research Structural Engineer
Taojun Liu, Visiting Scholar
Kenneth Rukstales, GIS Analyst

Including requests from Bob Pekelnicky et al

USGS—Golden, CO
Current (ASCE 7-16): Risk-targeted (1%-in-50yrs) w/ deterministic cap

- Alternative: Deterministic w/ uniform-hazard (975yr) floor
- Alternative: Uniform-hazard (975yr)
- Alternative: Uniform-hazard (1500yr)
- Alternative: Risk-targeted (1-to-3%-in-50yrs)
- Alternative: Risk-targeted (1%-in-50yrs) using a fragility w/ 5% probability of collapse at MCE_R

Note: For brevity, only short-period (0.2s) results are presented.
Collapse Risks from Current MCE\textsubscript{R} Maps

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS) September 28, 2016
Collapse Risks from Current MCE$_R$ Maps

40°N

35°N

115°W

120°W

0.99% - 1.10%
1.10% - 2.00%
2.00% - 3.00%
3.00% - 5.00%
5.00% - 9.45%

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS) September 28, 2016
Collapse Risks from Current MCE_R Maps

"Theoretical collapse risks, ground motion return periods, and largest values ... ," N. Luco et al (USGS)
Return Periods of Current MCE$_R$ Maps

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS)
Current & Alternative Maps

- **Current (ASCE 7-16):** Risk-targeted (1%-in-50yrs) w/ deterministic cap

- **Alternative:** Deterministic w/ uniform-hazard (975yr) floor

- **Alternative:** Uniform-hazard (975yr)

- **Alternative:** Uniform-hazard (1500yr)

- **Alternative:** Risk-targeted (1-to-3%-in-50yrs)

- **Alternative:** Risk-targeted (1%-in-50yrs) using a fragility w/ 5% probability of collapse at MCE_R
Collapse Risks from Alternative Maps

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS)
Return Periods of Alternative Maps

Building Seismic Safety Council (BSSC) Project ‘17 Meeting on Acceptable Risk

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS) September 28, 2016
Alternative ÷ Current Maps

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS) September 28, 2016
Current & Alternative Maps

- **Current (ASCE 7-16):** Risk-targeted (1%-in-50yrs) w/ deterministic cap
- **Alternative:** Deterministic w/ uniform-hazard (975yr) floor
- **Alternative:** Uniform-hazard (975yr)
- **Alternative:** Uniform-hazard (1500yr)
- **Alternative:** Risk-targeted (1-to-3%-in-50yrs)
- **Alternative:** Risk-targeted (1%-in-50yrs) using a fragility w/ 5% probability of collapse at MCE$_R$

"Theoretical collapse risks, ground motion return periods, and largest values ... ," N. Luco et al (USGS)
November 22, 2016
Collapse Risks from Alternative Maps

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS)

Building Seismic Safety Council (BSSC) Project ‘17 Meeting on Acceptable Risk

September 28, 2016
Alternative ÷ Current Maps

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS) September 28, 2016
Current & Alternative Maps

- **Current (ASCE 7-16):** Risk-targeted (1%-in-50yrs) w/ deterministic cap

- **Alternative:** Deterministic w/ uniform-hazard (975yr) floor

- **Alternative:** Uniform-hazard (975yr)

- **Alternative:** Uniform-hazard (1500yr)

- **Alternative:** Risk-targeted (1-to-3%-in-50yrs)

- **Alternative:** Risk-targeted (1%-in-50yrs) using a fragility w/ 5% probability of collapse at MCE_R
Theoretical collapse risks, ground motion return periods, and largest values ...,” N. Luco et al (USGS)
Alternative ÷ Current Maps

Building Seismic Safety Council (BSSC) Project ‘17 Working Group on Acceptable Risk

“Theoretical collapse risks, ground motion return periods, and largest values ...,” N. Luco et al (USGS) November 13, 2016
Current & Alternative Maps

- **Current (ASCE 7-16):** Risk-targeted (1%-in-50yrs) w/ deterministic cap
- **Alternative:** Deterministic w/ uniform-hazard (975yr) floor
- **Alternative:** Uniform-hazard (975yr)
- **Alternative:** Uniform-hazard (1500yr)
- **Alternative:** Risk-targeted (1-to-3%-in-50yrs)
- **Alternative:** Risk-targeted (1%-in-50yrs) using a fragility w/ 5% probability of collapse at MCE_R
Collapse Risks from Alternative Maps

“Theoretical collapse risks, ground motion return periods, and largest values ...,” N. Luco et al (USGS)
Theoretical collapse risks, ground motion return periods, and largest values ...,” N. Luco et al (USGS)
“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS)
November 28, 2016
Alternative ÷ Current Maps

“Theoretical collapse risks, ground motion return periods, and largest values ...,” N. Luco et al (USGS)
Alternative ÷ Current Maps

Building Seismic Safety Council (BSSC) Project ‘17 Meeting on Acceptable Risk

“Theoretical collapse risks, ground motion return periods, and largest values … ,” N. Luco et al (USGS)
Reference

A RISK-TARGETED ALTERNATIVE TO DETERMINISTIC CAPPING OF MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION MAPS

N. Luco(1), T.J. Liu(2), K.S. Rukstales(3)

(1) Research Structural Engineer, United States (U.S.) Geological Survey, nluco@usgs.gov
(2) Postdoctoral Fellow, Natural Sciences and Engineering Research Council of Canada, tliu@usgs.gov
(3) GIS Analyst, U.S. Geological Survey, rukstales@usgs.gov

Building Seismic Safety Council (BSSC) Project ‘17 Meeting on Acceptable Risk

“Theoretical collapse risks, ground motion return periods, and largest values ... ,” N. Luco et al (USGS)
Current & Alternative Maps

- **Current (ASCE 7-16):** Risk-targeted (1%-in-50yrs) w/ deterministic cap
- **Alternative:** Deterministic w/ uniform-hazard (975yr) floor
- **Alternative:** Uniform-hazard (975yr)
- **Alternative:** Uniform-hazard (1500yr)
- **Alternative:** Risk-targeted (1-to-3%-in-50yrs)
- **Alternative:** Risk-targeted (1%-in-50yrs) using a fragility w/ 5% probability of collapse at MCE_R
Return Periods of Alternative Maps

“Theoretical collapse risks, ground motion return periods, and largest values …,” N. Luco et al (USGS)
Alternative ÷ Current Maps

Building Seismic Safety Council (BSSC) Project ‘17 Working Group on Acceptable Risk

“Theoretical collapse risks, ground motion return periods, and largest values ...,” N. Luco et al (USGS) November 22, 2016
Current & Alternative Maps

- **Current (ASCE 7-16):** Risk-targeted (1%-in-50yrs) w/ deterministic cap
- **Alternative:** Deterministic w/ uniform-hazard (975yr) floor
- **Alternative:** Uniform-hazard (975yr)
- **Alternative:** Uniform-hazard (1500yr)
- **Alternative:** Risk-targeted (1-to-3%-in-50yrs)
- **Alternative:** Risk-targeted (1%-in-50yrs) using a fragility w/ 5% probability of collapse at MCE_R
Largest Ground Motion Values

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Largest S_S</th>
<th>In ASCE 7-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (ASCE 7-16)</td>
<td>3.3g</td>
<td>New Madrid, MO (36.60, -89.60)</td>
</tr>
<tr>
<td>Deterministic w/ 975yr floor</td>
<td>5.3g</td>
<td>Meers, OK (34.75, -98.40)</td>
</tr>
<tr>
<td>Uniform-hazard (975yr)</td>
<td>3.7g</td>
<td>Imperial Valley, CA (32.85, -115.50)</td>
</tr>
<tr>
<td>Uniform-hazard (1500yr)</td>
<td>4.2g</td>
<td>Imperial Valley, CA (32.85, -115.50)</td>
</tr>
<tr>
<td>Risk-targeted (1-3% in 50yrs)</td>
<td>3.0g</td>
<td>Imperial Valley, CA (32.85, -115.50)</td>
</tr>
<tr>
<td>Risk-targeted (1% in 50yrs) w/ 5% fragility</td>
<td>3.7g</td>
<td>Imperial Valley, CA (32.85, -115.50)</td>
</tr>
</tbody>
</table>
Straw Poll of Working Group

• 5 favor returning to Uniform Hazard
 – 4 chose 1,500 year
 – 3 voted 1,500 as a second choice
• 3 favor keeping current MCE_R definition
• 2 favor going to 1% to 3% variable risk
 – One other member expressed this is second choice
Reasons to go to 1,500 year

• Avoids using a fragility curve
• Avoiding the risk calculation, the GM computations are simplified
• Avoids deterministic areas, removing the wide variations in collapse probabilities observed now
• Achieves a surprisingly consistent degree of mean collapse risk regardless of hazard level
Reasons to go to 1% - 3% Variable

• MCE definition is based on the performance of the buildings
• It is reasonable/justifiable to design buildings in high seismic regions for a higher collapse risk
Reasons to Stay w/ Current MCER

- No change
- Does not create another “yo” in the yo-yo issue
- Alternates produce too big a drop
- While there are opportunities for marginal improvement, changing the target without a very compelling reason will create more problems than it solves.