SEISMIC DESIGN OF MASONRY STRUCTURES
NEHRP Recommended Provisions
Masonry Structures:

- Reference standards
- Masonry basics
- Masonry behavior
- Organization of TMS 402 Code
- Types of shear walls
- Ductility provisions
- Masonry walls out-of-plane
- Shear wall in-plane design
- Simplified design for wall-type structures
- Shear wall design example
NEHRP Recommended Provisions
Masonry Design

Basic Documents

- NEHRP Recommended Provisions
- ASCE 7-16, Minimum Design Loads for Buildings and Other Structures
- TMS 402-13, Building Code Requirements for Masonry Structures
- TMS 602-13, Specification for Masonry Structures
- IBC 2015, International Building code
NEHRP Recommended Provisions
Masonry Design
Masonry Basics
Review Masonry Basics

- Basic terms
- Units
- Mortar
- Grout
- Accessory materials
 - Reinforcement, connectors, flashing, sealants
Basic Terms

- Bond patterns (looking at wall):

 - **Running bond**
 - **Stack bond**
 - **1/3 Running bond**
 - **Flemish bond**

 - bed joints
 - head joints
Masonry Units

- Concrete masonry units (CMU):
 - Specified by ASTM C 90
 - Minimum strength (net area) of 2000 psi (average)
 - Net area 55% of gross area
 - Nominal vs specified vs actual dimensions
 - Type I and Type II designations no longer exist
Masonry Units

- Clay masonry units:
 - Specified by ASTM C 62 or C 216
 - Usually solid, with small core holes
 - If cores $\leq 25\%$ net area, considered 100% solid
 - Hollow units are similar to CMU - can be reinforced
Masonry Mortar

- Mortar specified by ASTM C 270
- Three cementitious systems
 - Portland cement + lime + sand (“traditional”)
 - Masonry cement mortar (lime is included in cement)
 - Mortar cement mortar (lime is included in cement, higher air contents)
Masonry Mortar

- Within each cementitious system, mortar is specified by type (M a S o N w O r K):
 - Type K to Type M, increasing volume of portland cement.
 - As the volume proportion of portland cement increases,
 - sets up faster
 - higher compressive and tensile bond strengths.
 - mortar is less able to deform when hardened.
 - Types M and S are specified for modern structural masonry construction.
 - Type N for non-loadbearing and for brick veneer
 - Type O or K for historic masonry repairs
 - Specify by Proportion (preferred) or Property
 - Onsite testing is not required
Masonry Mortar

- **Plastic mortar properties**
 - Workability
 - Water retentivity
 - Rate of hardening

 Important for good bond

- **Hardened mortar properties**
 - Bond
 - Compressive strength
 - Volume stability
 - Durability

 Important, seldom specified
Grout

- Grout specified by ASTM C 476
- Two kinds of grout:
 - Fine grout (cement, sand, water)
 - Coarse grout (cement, sand, pea gravel, water)
- ASTM C 476 permits small amount of hydrated lime.
 - Lime usually not used in plant – batched grout.
Grout

- Proportion of water not specified
- The slump should be 8 to 11 in.
- Masonry units absorb water from the grout
 - High-slump grout will still be strong enough
Role of f_m'

- **Concrete:**
 - Designer specifies value of f'_c
 - Compression tests on cylinders cast in field

- **Masonry**
 - Designer specifies value of f'_m
 - “Unit Strength Method” or “Prism Test Method”
Application of Unit Strength Method
(Specification Tables 1, 2)

- Designer determines required material specification:
 - Designer states assumed value of f_m'
 - Specifier specifies units, mortar and grout that will satisfy “unit strength method”
 - Compliance with f_m' can be verified with no tests on mortar, grout, or prisms
NEHRP Recommended Provisions
Masonry Design

Masonry Behavior
Masonry Behavior

- Locally, masonry is nonisotropic, nonhomogeneous, and nonlinear.
- Globally, can be idealized as isotropic and homogeneous.
- Equivalent rectangular stress block.
Summary of Masonry Behavior

4-Way Composite Action
● Units, mortar, reinforcement, grout

Compression
● High strength
● Brittle - low ductility
● Confinement difficult to achieve

Tension
● Good strength when reinf. takes tension
● Very little strength without reinf.
● (continuous joints are a plane of weakness)
Design Implications from Masonry Behavior

Unreinforced

● Design as elastic / brittle material
● R factors very low
● Design force = EQ force

Reinforced

● Design similar to reinforced concrete
● Confinement, ductility difficult to achieve
● R factors lower than concrete
Masonry Behavior

Head joint weakness

Stacked bond
- only mortar

Running bond
- half units
Masonry Behavior

Crowded cells make grout flow difficult
Masonry Behavior: out-of-plane

flexural strength

anchorage
NEHRP Recommended Provisions
Masonry Design

Organization of TMS 402 Code
Organization of 2013 TMS 602 Specification

TMS 402 Code → TMS 602 Specification

Part 1 General

1.6 Quality assurance

Part 2 Products

2.1 - Mortar
2.2 - Grout
2.3 - Masonry Units
2.4 - Reinforcement
2.5 - Accessories
2.6 - Mixing
2.7 - Fabrication

Part 3 Execution

3.1 - Inspection
3.2 - Preparation
3.3 - Masonry erection
3.4 - Reinforcement
3.5 - Grout placement
3.6 - Prestressing
3.7 - Field quality control
3.8 - Cleaning

TMS 602 Specification
Organization of TMS 402 Code
Part 1 – General

Chapter 1
1.1 Scope
1.2 Contract documents and calculations
1.3 Special systems
1.4 Reference standards

Chapter 2
2.1 Notation
2.2 Definitions

Chapter 3
3.1 Quality assurance program
3.2 Construction
Organization of TMS 402 Code
Part 2 – Design Requirements

Chapter 4
4.1 Loading
4.2 Material properties
4.3 Section properties
4.4 Connections to structural frames
4.5 Stack bond masonry

Chapter 6
6.1 Details of reinforcement
6.2 Anchor bolts

Chapter 5
5.1 Masonry assemblies
5.2 Beams
5.3 Columns
5.4 Pilasters
5.5 Corbels

Chapter 7
Seismic design requirements
Code 4.2, Material Properties

- Prescriptive modulus of elasticity:
 \[E_m = 700 \text{ f'}_m \text{ for clay masonry} \]
 \[E_m = 900 \text{ f'}_m \text{ for concrete masonry} \]
 or
 Chord modulus of elasticity from tests

- Shear modulus, thermal expansion coefficients, and creep coefficients for clay, concrete, and AAC masonry

- Moisture expansion coefficient for clay masonry

- Shrinkage coefficients for concrete and AAC masonry
Code 4.3, Section Properties

- Use minimum (critical) area for computing member stresses or capacities
 - Capacity is governed by the weakest section; for example, the bed joints of face-shell bedded hollow masonry
Chapter 7, Seismic Design

- ASCE 7-16 General Structural Integrity:
 - Load path connections
 - Notional lateral forces
 - Connection to supports
 - Anchorage of walls
Chapter 7, Seismic Design

• General analysis
 – Drift limits: Use legally adopted building code or ASCE7
 – Drift limits assumed satisfied for many wall types
 – Special Reinforced Masonry walls are the exception to this rule
Chapter 7, Seismic Design

- Seismic Design Category C:
 - Empirical and plain not permitted
 - All other types of shear walls permitted:
 - Ordinary reinforced
 - Intermediate reinforced
 - Special reinforced
 - Participating walls shall be reinforced
 - Non-participating walls - minimum prescriptive reinforcement
 - At least 80% lateral resistance in a line from shear walls
Chapter 7, Seismic Design

- Seismic Design Category D:
 - Only special reinforced shear wall permitted
 - Minimum prescriptive requirements for reinforcement and connections
 - Type N mortar and masonry cement mortars are prohibited in the lateral force-resisting system
 - Non-participating walls - minimum prescriptive reinforcement
Chapter 7, Seismic Design

Seismic Design Category D:

● Extra caution against brittle shear failure for Special Reinforced Masonry Shear Walls (7.3.2.6.1.1):

- $\phi V_n > 1.25 M_n$ or
- $\phi V_n > 2.5 V_u$
Chapter 7, Seismic Design

• Seismic Design Categories E and F:
 – Additional reinforcement requirements for non-participating stack-bond masonry
Minimum Reinforcement for Special Reinforced Shear Walls

- Roof connectors @ 48 in. max oc
- Roof diaphragm
- #4 bar (min) within 16 in. of top of parapet
- Top of Parapet
- #4 bar (min) @ diaphragms continuous through control joint
- #4 bar (min) within 8 in. of all control joints
- #4 bars around openings 24 in. or 40 db past opening
- #4 bar (min) within 16 in. of corners & ends of walls
- Min. #4 bars @ 4 ft oc max. or W1.7 @ 16 in oc
- Min. #4 bars @ 4 ft oc max.
- \(\rho \) total both ways = 0.002

Instructional Material Complementing FEMA P-1051, Design Examples
Minimum Reinforcement, SW Types

<table>
<thead>
<tr>
<th>SW Type</th>
<th>Minimum Reinforcement</th>
<th>Permitted in SDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirically Designed</td>
<td>none</td>
<td>A</td>
</tr>
<tr>
<td>Ordinary Plain</td>
<td>none</td>
<td>A, B</td>
</tr>
<tr>
<td>Detailed Plain</td>
<td>Vertical reinforcement = #4 at corners, within 16 in. of openings, within 8 in. of movement joints, maximum spacing 10 ft; horizontal reinforcement W1.7 @ 16 in. or #4 in bond beams @ 10 ft</td>
<td>A, B</td>
</tr>
<tr>
<td>Ordinary Reinforced</td>
<td>same as above</td>
<td>A, B, C</td>
</tr>
<tr>
<td>Intermediate Reinforced</td>
<td>same as above, but vertical reinforcement @ 4 ft</td>
<td>A, B, C</td>
</tr>
<tr>
<td>Special Reinforced</td>
<td>same as above, but horizontal reinforcement @ 4 ft, and $\rho \geq 0.002$ (sum of horiz + vert)</td>
<td>A, B, C, D, E, F</td>
</tr>
</tbody>
</table>
Organization of TMS 402 Code
Chapter 9, Strength Design

- Fundamental basis
- Design strength
- \(\phi \) factors
- Deformation requirements
- Anchor bolts
- Bearing strength
- Compressive strength
- Modulus of rupture
- Strength of reinforcement
- Unreinforced masonry
- Reinforced masonry
Fundamental Basis for Strength Design

- $\phi Q_n > \gamma Q_u$
- Load factors come from ASCE 7
- Resistance factors (ϕ) come from TMS 402
- $\gamma / \phi \approx$ F.S. from ASD
Code 9.1.4, Strength-reduction Factors (ϕ) for Strength Design

<table>
<thead>
<tr>
<th>Action</th>
<th>Reinforced Masonry</th>
<th>Unreinforced Masonry</th>
</tr>
</thead>
<tbody>
<tr>
<td>combinations of flexure and axial load</td>
<td>0.90</td>
<td>0.60</td>
</tr>
<tr>
<td>shear</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>bearing</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Code 9.3, Reinforced Masonry

- Masonry in flexural tension is cracked
- Reinforcing steel is needed to resist tension
- Similar to strength design of reinforced concrete
- Compressive reinforcement ignored unless tied in compliance with 5.3.1.4
Code 9.3.2, Design Assumptions

- Continuity between reinforcement and grout
- Equilibrium
- $\varepsilon_{mu} = 0.0035$ for clay masonry, 0.0025 for concrete masonry
- Plane sections remain plane
- Elasto-plastic stress-strain curve for reinforcement
- Tensile strength of masonry is neglected
- Stress block height of $0.80f_m'$ and depth of $a = 0.80c$
Code 9.3.3.5, Maximum Reinforcement (Flexural Ductility Check)

- Does not apply if $M_u / V_u d < 1.0$ and $R \leq 1.5$
- Locate neutral axis based on extreme-fiber strains
- Calculate compressive force, C (may include compressive reinforcement)
- Tensile reinforcement + axial load = C

$\varepsilon_{mu} = 0.0035$ clay
0.0025 concrete

$\varepsilon_s = \alpha \varepsilon_y$

$0.80 f_m'$, $\alpha = 1.5$ Ordinary
3 Intermediate
4 Special
Code 9.3.4, Nominal Shear Strength

- \(V_n = (V_{nm} + V_{ns}) \gamma_g \)
- \(V_n \) shall not exceed:
 - \(\frac{M_u}{V_u} d_v \leq 0.25 \) \(V_n \leq 6 A_n \sqrt{f_{m'}} \)
 - \(\frac{M_u}{V_u} d_v \geq 1.0 \) \(V_n \leq 4 A_n \sqrt{f_{m'}} \)
 - Linear interpolation between these extremes
 - Objective is to avoid crushing of diagonal strut
 - Objective is to preclude critical (brittle) shear-related failures
- \(\gamma_g = 1.0 \) for fully grouted walls
 - \(= 0.75 \) for partially grouted walls
Code 9.3.4, Nominal Shear Strength

- \(V_m \) and \(V_s \) are given by:

\[
V_{nm} = \left[4 - 1.75 \left(\frac{M_u}{V_u d_v} \right) \right] A_n \sqrt{f_m'} + 0.25 P_u \quad (9-24)
\]

\[
V_{ns} = 0.5 \left(\frac{A_v}{s} \right) f_y d_v \quad (9-25)
\]

Empirical – from research
Code 9.3.5, Design of Walls for Out-of-Plane Loads

- Maximum reinforcement by Code 9.3.3.5
- Procedures for calculating $P - \delta$ effects using iteration or a moment magnifier
- **Note 9.3.5.4.2** – M and Δ equations are based on simple supports top & bottom
Code 9.3.6, Design of Walls for In-plane Loads

- Design assumptions of Code 9.3.2 apply
- Interaction diagram:

![Interaction Diagram]

- P_n max. per ductility requirement
- Pure compression
- Pure flexure
- Balance point
- Excluded portion non-ductile
NEHRP Recommended Provisions
Masonry Design

Simplified Design for Wall-type Structures
Essential Function of Walls in Resisting Lateral Forces

- Vertical strips of walls perpendicular to lateral forces resist combinations of axial load and out-of-plane moments, and transfer their reactions to horizontal diaphragms.

- Walls parallel to lateral forces act as shear walls.

- Bond beams transfer reactions from walls to horizontal diaphragms and act as diaphragm chords.
Moments and axial forces due to combinations of gravity and lateral load

\[M = P e \]

\[M \approx P e / 2 \]

\[M_{\text{wind, eq}} \]
Component Design: Design of walls

Out-of-plane forces, F_p

Out-of-plane bending and shear
Component Design basics

beff = 6t ≤ s ≤ 72”

T - beam section assumed to resist out-of-plane flexure
(Masonry laid in running bond)
Design Flexural Reinforcement as Governed by Out-of-plane Loading

- Practical wall thickness is governed by available unit dimensions:
 - 8- by 8- by 16-in. nominal dimensions is most common
 - Specified thickness = 7-5/8 in.
 - One curtain of bars, placed in center of grouted cells
- Can have nominal 6” through 12”
- Proportion flexural reinforcement to resist out-of-plane wind or earthquake forces
Distribution of Shears to Shear Walls

- Classical approach
 - Determine whether the diaphragm is “rigid” or “flexible”
 - Carry out an appropriate analysis for shears
Component Design basics

In-plane force

Force distributed according to relative stiffness
Design Flexural Reinforcement as Governed by In-plane Loading

- Construct moment – axial force interaction diagram
 - Initial estimate
 - Computer programs
 - Spreadsheets
 - Tables
Check Shear Capacity

- \(V_n = (V_{nm} + V_{ns})\gamma_g \)
- \(V_{nm} \) depends on \((M_u / V_u d_v) \) ratio
- \(V_{ns} = (0.5) A_v f_y \) (note efficiency factor when combining \(V_{nm} \) and \(V_{ns} \))
- \(\gamma_g = 1.0 \) for fully grouted walls

\[\Sigma A_v f_y \]
Procedure for Strength Design of Reinforced Masonry Shear Walls

- Select trial design
- Compute M_u and V_u for in- and out-of-plane loading
 - Include p-δ for out-of-plane moment
- Design reinforcement for out-of-plane loading
- Design reinforcement as controlled by in-plane loading
 - Revise design as necessary
- Check to ensure ductility
- Check shear capacity and revise if required
- Check detailing
Refer to NEHRP Design Examples (FEMA P-751) Ch. 13, Masonry

Shear Wall: Next slide
Design Example

Refer to NEHRP Ch. 13, Masonry
Design Example

Trial design: (6) cells w/ (2) #6

Refer to NEHRP Ch. 13, Masonry
Design Example

Ductility Check

Refer to NEHRP Ch. 13, Masonry

Note: $\alpha = 4$ for Special Reinforced Masonry Shear Wall

$\varepsilon_x = 4\varepsilon_y = 0.0083$
Design Example

Ductility Check (cont.)

Refer to NEHRP Ch. 13, Masonry
Design Example

Ductility Check (continued)

\[\Sigma C > \Sigma T + P \]

\[Cm + Cs1 + Cs2 > Ts1 + Ts2 + Ts3 + Ts4 + P \]

\[315.5 + 53.6 + 28.1 > 52.8 + 52.8 + 52.8 + 43.4 + 45.1 \]

\[397 \text{ kips} > 247 \text{ kips} \quad \text{OK} \]

OK because comp capacity > tension capacity

Refer to NEHRP Ch. 13, Masonry
Refer to NEHRP Ch. 13, Masonry

\[P = 0 \text{ Case} \]
Design Example

Refer to NEHRP Ch. 13, Masonry

Balanced Case

\[
\begin{align*}
C_{m1} & \quad C_{m2} & \quad C_{m3} \\
\varepsilon_m = 0.0025 & \quad \varepsilon_Y = 0.00207 & \\
0.8 f'_m & \quad C_{s2} & \quad C_{s1} \\
\varepsilon = 0.0019 & \quad \alpha = 40.3'' & \\
\end{align*}
\]

\[
\begin{align*}
16'' & \quad 16'' & \quad 8.3'' & \quad 7.7'' & \quad 2.3'' & \quad \varepsilon = 0.0017 \\
48'' & \quad 44'' & \quad 4'' & \quad \text{Center Line} & \quad \text{N.A.} & \quad 44'' \\
\end{align*}
\]
Design Example

Refer to NEHRP Ch. 13, Masonry

\[Pn = \Sigma C - \Sigma T = 534 \text{ kips} \]
\[\phi Pn = (0.9)(534) = 481 \text{ kips} \]
\[\Sigma McI = 0: \]
\[Mn = 23,540 \text{ in.-kips} \]
\[\phi Mn = (0.9)(23,540) = 1,765 \text{ ft-kips} \]
Refer to NEHRP Ch. 13, Masonry
Web sites for more information

- BSSC = https://www.nibs.org/?page=bssc
- TMS = www.masonrysociety.org
- ACI = www.concrete.org
- ASCE / SEI = www.seinstitute.org
- NCMA = www.ncma.org
- BIA = www.bia.org
Acknowledgements

● This presentation was adapted from material prepared by Prof. Richard E. Klingner, University of Texas at Austin and by Dr. James Harris, J.R. Harris & Co.

● Some of the material originally prepared by Prof. Klingner was for a US Army short course.

● Some of the material originally prepared by Prof. Klingner was for The Masonry Society and is used with their permission.

● The material originally prepared by Dr. Harris was for FEMA, The Building Seismic Safety Council, and the American Society of Civil Engineers.
Questions?

dsommer@degenkolb.com
DISCLAIMER

● NOTICE: Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the Federal Emergency Management Agency. Additionally, neither FEMA nor any of its employees make any warranty, expressed or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process included in this publication.

● The opinions expressed herein regarding the requirements of the NEHRP Recommended Seismic Provisions, the referenced standards, and the building codes are not to be used for design purposes. Rather the user should consult the jurisdiction’s building official who has the authority to render interpretation of the code.

● Any modifications made to the file represent the presenters' opinion only.