Attendees: Voting Members:
Pete Carrato, Bechtel Corporation, Chair of IT Greg Soules, CB&I John Silva, Hilti

Corresponding Members:
Rick Drake, Fluor John Rolfes, Computerized

NIBS Staff:
n/a

Agenda and Background for Discussion:

Update on Latest PUC Meeting
Tee head supports
Time Line for Proposing Provision Updates
Current Proposals Under Consideration
25% Rule in Section 15.3.1 revision to 20%
Proposal by R. Bachman to modify seismic design parameters for steel OCBF

Discussion:

Carrato provided a summary of recent PUC activities.

The time line for proposing updates to seismic provisions was reviewed. It was explained that the window for new proposals is slowly closing. Proposals submitted after the first quarter of 2019 will probably be too late for considerations.
Tee head supports were discussed in detail. It was explained that this issue is more appropriate for ASCE 7 to deal with than for the PUC. This position was acceptable to R. Drake who had made the original proposal. G. Soules indicated that commentary could be added to ASCE 7 to clarify the issue. It was further mentioned by Soules that the ASCE Guidelines for Seismic Evaluation and Design of Petrochemical Facilities is currently being updated and that addition to the commentary and/or provisions in this document is also possible. Soules is a member of both ASCE 7 and the ASCE Petrochemical committees and will take this action.

The proposal to modify the 25% combine weight rule given in Section 15.3.1 was discussed in detail. The proposal is to modify this value to 20%. This work is being done in conjunction with IT5 on Non-Structural Components. This approach was acceptable to those on the phone call.

R. Bachman’s proposal to modify seismic design parameters for steel OCBG in Chapter 15 generated substantial discussion. Points of discussion included; the possibility that the existing provisions provide a “loop hole” in the design requirements, the consideration of using ordinary systems result in substantially higher foundation loads than for special systems, the existing provisions cross over between AISC 360 and 341 (R = 1.5 is AISC 360) and the associated difference in requirements such as quality control, weld metal, etc. Silva requested a comparison of design using the three sets of parameters currently provided in Chapter 15 for steel OCBF. Carrato added that R. Tremblay was currently performing tests of concentrically braced frames that may lead to further proposals for provisions modifications. It was clear that there is no consensus within the IT on this issue. Action items from this discussion are for Carrato to 1) circulate the draft proposal to modify seismic design parameters to the full IT for review and comments and 2) to request that R. Bachman provide an example showing the impact of the existing and proposed provisions showing member sizes, connection designs and foundation forces for use by the IT in their deliberations.