SAMPLE PROBLEMS

Sponsored by the National Society of Professional Surveyors

2015-16
TRIG–STAR PROBLEM LOCAL CONTEST

PRINT NAME: __________________________

KNOWN: DISTANCE AC = 415.23 DISTANCE BC = 512.09

FIND: \(\angle ACB = \) ___________ (5 POINTS)

DISTANCE AB = ___________ (5 POINTS)

REQUIRED ANSWER FORMAT
DISTANCES: NEAREST HUNDREDTH
ANGLES: DEGREES–MINUTES–SECONDS
TO THE NEAREST SECOND

TRIG–STAR PROBLEM LOCAL CONTEST

KNOWN: DISTANCE EF = 240.88 \(\angle EFG = 118°05'50" \) \(\angle FEG = 40°12'25" \)

FIND: \(\angle EGF = \) ___________ (6 POINTS)

DISTANCE EH = ___________ (6 POINTS)
DISTANCE FH = ___________ (6 POINTS)
DISTANCE FG = ___________ (6 POINTS)
DISTANCE GH = ___________ (6 POINTS)

REQUIRED ANSWER FORMAT
DISTANCES: NEAREST HUNDREDTH
ANGLES: DEGREES–MINUTES–SECONDS
TO THE NEAREST SECOND

PAGE TOTAL: _______ POINTS
TRIG—STAR PROBLEM LOCAL CONTEST

KNOWN: DISTANCE BC = 530.98 DISTANCE CD = 243.27
\[\angle BAD = 85^\circ 01' 42" \]

FIND: DISTANCE AB = _______________ (10 POINTS)
DISTANCE AD = _______________ (10 POINTS)
DISTANCE AC = _______________ (10 POINTS)

REQUIRED ANSWER FORMAT
DISTANCES: NEAREST HUNDREDTH

PAGE TOTAL: _______ POINTS
TRIG–STAR PROBLEM LOCAL CONTEST

DISTANCE BC = 348.42 DISTANCE CD = 87.29 DISTANCE DA = 289.52
DISTANCE GH = 184.75 DISTANCE GB = 60.99 DISTANCE GE = 76.41
DISTANCE HA = 91.03 DISTANCE HF = 45.97 \(\angle BGH = 60°39’20” \)
\(\angle HGE = 36°20’59” \) \(\angle AHG = 54°22’12” \) \(\angle GHF = 47°58’52” \)

\[\text{DISTANCE BE} = \quad \text{(6 POINTS)} \]
\[\text{DISTANCE AF} = \quad \text{(6 POINTS)} \]
\[\text{DISTANCE AB} = \quad \text{(6 POINTS)} \]
\[\text{ANGLE ABE} = \quad \text{(6 POINTS)} \]
\[\text{DISTANCE EF} = \quad \text{(6 POINTS)} \]

REQUIRED ANSWER FORMAT
DISTANCES: NEAREST HUNDREDTH
ANGLES: DEGREES-MINUTES-SECONDS
TO THE NEAREST SECOND

COPYRIGHT - NSPS

PAGE TOTAL: \(\quad \) POINTS

SHEET 3 OF 3
TRIG-STAR MISCELLANEOUS DATA

RIGHT TRIANGLE FORMULAS

PYTHAGOREAN THEOREM: \(a^2 + b^2 = c^2 \)

AREA: \(\frac{1}{2}ab \)

TRIGONOMETRIC FUNCTIONS: \(\sin A = \frac{a}{c}, \cos A = \frac{b}{c}, \tan A = \frac{a}{b} \)

OBLIQUE TRIANGLE FORMULAS

LAW OF SINES: \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

LAW OF COSINES: \(a^2 = b^2 + c^2 - 2bc\cos A \)

AREA: \(\frac{1}{2}bh \)

CIRCLE FORMULAS

DIAMETER = \(d \) RADIUS = \(r \)

CIRCUMFERENCE: \(2\pi r \) or \(\pi d \)

AREA: \(\pi r^2 \)

ONE DEGREE (1') OF ARC = 60 MINUTES (60') OF ARC
ONE MINUTE (1') OF ARC = 60 SECONDS (60'') OF ARC

THEREFORE ONE DEGREE OF ARC (1') = 3600 SECONDS OF ARC.
TRIG-STAR ANSWER KEY LOCAL CONTEST

PAGE 1

∠ACB = 35°49'14"
DISTANCE AB = 299.70

PAGE 1

∠EGF = 21°41'45"
DISTANCE EH = 183.96
DISTANCE FH = 155.50
DISTANCE FG = 420.64
DISTANCE GH = 390.84

PAGE 2

DISTANCE AB = 290.38
DISTANCE AD = 554.15
DISTANCE AC = 605.19

PAGE 3

DISTANCE BE = 103.42
DISTANCE AF = 110.41
DISTANCE AB = 103.94
∠ABE = 83°44'05"
DISTANCE EF = 93.11