Statins and New Onset Diabetes Mellitus

Scott Coon, PharmD, BCPS, BCACP
St. Louis College of Pharmacy
St. Louis County Department of Public Health
Scott.Coon@stlcop.edu
Conflict of interest

None
Abbreviations

ADA = American Diabetes Association
ASCVD = atherosclerotic cardiovascular disease
ARR = absolute risk reduction
CHD = coronary heart disease
CHF = congestive heart failure
CVA = cerebrovascular accident
CVD = cardiovascular disease
DM = diabetes mellitus
FPG = fasting plasma glucose
GLUT4 = glucose transporter type 4
HFpEF = heart failure with preserved ejection fraction
HTN = hypertension
HDL = high-density lipoprotein
IFG = impaired fasting glucose
IGT = impaired glucose tolerance
LDL = low-density lipoprotein
OGTT = oral glucose tolerance test
OR = odds ratio
PAD = peripheral artery disease
NNH = number needed to harm
NNT = number needed to treat
NODM = new onset diabetes mellitus
RCT = randomized control trials
RR = relative risk
RRR = relative risk reduction
SLC2A4 = solute carrier family 2 member 4
TG = triglycerides
TLC = therapeutic lifestyle changes
Lecture Objectives

1) Recognize the risk of diabetes associated with statin therapy in a population at high risk for diabetes

2) Compare and contrast statin benefit to risk when treating patients in a population at high risk for diabetes

3) Evaluate risk for diabetes as a result of statin therapy

4) Compare and contrast risk for new onset diabetes amongst individual statins
Flow

Background
- Statin Guideline Review
- Statin benefit
- Pre-Diabetes identification and mgmt
- FDA advisory

RCTs
- WOSCOPS, 1995
- JUPITER, 2008

Meta-Analyses
- Rajpathk et al., 2009
- Sattar et al., 2010

Statin Comparison
- Pitavastatin:
 - J-PREDICT, 2013
 - Vallejo-Vaz et al., 2015

Conclusions
- Controversies
- NODM Risk Factors and Reviews
- Why does this happen?
- Other analyses and recap
Have you taken diabetes drugs? - Get justice for your suffering

If you have taken medicine for diabetes, you may qualify for compensation

Scholarly articles for Statins and diabetes

Statins and diabetes - Carmena - Cited by 34
Statins and diabetes - Maki - Cited by 9

American Diabetes Association Indications for Statins ... - Diabetes Care
care.diabetesjournals.org/content/32/suppl_2/S384
by R Eldor - 2009 - Cited by 38 - Related articles
We conclude that in this subset of individuals with diabetes, statin therapy should be based on the existing evidence and prescribed in a fixed-dose manner.

Statins Linked to Raised Risk of Type 2 Diabetes – WebMD
www.webmd.com › Diabetes › News
Mar 4, 2015 - Statins appear to increase the risk of type 2 diabetes in several ways, the researchers said. One is that the drugs can increase a person’s ...
ADA: Testing for DM/pre-DM\(^1\)

- Adults any age who are overweight (BMI ≥ 25 kg/m\(^2\)*) + additional risk factors:

<table>
<thead>
<tr>
<th>Physical inactivity</th>
<th>Hypertension (≥140/90 mmHg or on therapy for HTN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk race/ethnicity: African American, Latino, Native American, Asian American..</td>
<td>HDL < 35 mg/dL</td>
</tr>
<tr>
<td>A1C ≥ 5.7%, IGT, or IFG on previous testing</td>
<td>Other clinical conditions associated with insulin resistance (e.g., severe obesity, polycystic ovarian syndrome)</td>
</tr>
</tbody>
</table>

*Asian Americans with BMI ≥ 23 kg/m\(^2\)

Age > 45 years old
ADA: Pre-DM definitions and Management

Pre-diabetes or increased risk for diabetes

Definitions:
1. FPG 100-125 (IFG)
2. OGTT 140-199 (IGT)
3. A1c 5.7-6.4%

IFG and IGT should not be viewed as “clinical entities in their own right,” but as risk factors for DM & CVD

Management

<table>
<thead>
<tr>
<th>Management</th>
<th>A1c annually</th>
<th>150 min/week moderate activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive interventions and vigilant follow-up</td>
<td>7% weight loss</td>
<td></td>
</tr>
<tr>
<td>Treat other modifiable CVD risk factors</td>
<td>metformin* (BMI ≥35; age <60; prior GDM)</td>
<td></td>
</tr>
</tbody>
</table>

*alpha-glucosidase inhibitors/orlistat/TZDs decrease incidence to various degrees (should consider cost/ADEs/lack of persistent effect with other meds)
ADA: ASCVD Risk reduction

Section 5. Prevention or Delay of T2DM
- “Increased vigilance” in the identification/treatment of modifiable CVD risk factors

Section 8. Cardiovascular disease/risk mgmt.
- ACC/AHA 10-year ASCVD risk calculator “may be a useful tool”
- Consider moderate intensity statin age 40-75 years and low-risk
- Consider high intensity statin in when high-risk (ASCVD risk factors*)
- Diabetes screening when on statin therapy

*ASCVD risk factors include: LDL ≥ 100 mg/dL, high blood pressure, smoking, CKD, albuminuria, family history premature ASCVD
Number needed to treat (NNT) x5 yrs, adjusted
- 1 case of all-cause mortality per 96 (64-244)* treated
- 1 CHD event (fatal/non-fatal) per 56 (46-75)* treated

Relative risk reduction (RRR) x5 yrs
- 25% RRR fatal/non-fatal CVD events
- 27% RRR fatal/non-fatal CHD events
- 22% RRR fatal/non-fatal CVA events
- 38% RRR revascularization (CABG, PCI)

*ranges represent 95% confidence intervals
FDA Drug Safety Communication

Increases in glycosylated hemoglobin (HbA1c) and fasting plasma glucose

2-28-2012

• Statin labels updated to reflect effect of statins on incident diabetes and increases in HbA1c and/or fasting plasma glucose

• Update was based on clinical trial, meta-analyses, and epidemiological data
Case 1

58 year old African American man is being seen for routine follow-up with PCP. Pt does not exercise, but does cook his own meals at home.

Problem list:
- Hypertension (x3 yr)
- Glaucoma (x1 yr)

Medications:
Amlodipine 10mg PO daily
Bimatoprost 0.03% i gtt OU QHS

Vitals (today):
BP: 138/79 mmHg
HR: 75 bpm
RR: 17 bpm
BMI: 31 kg/m²

Labs:

<table>
<thead>
<tr>
<th>Na⁺ 140</th>
<th>Cl⁻ 100</th>
<th>BUN 15</th>
<th>FPG 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺ 4.5</td>
<td>HCO₃⁻ 26</td>
<td>SCr 1.1</td>
<td></td>
</tr>
</tbody>
</table>

A₁c (today) 5.9%
A₁c (1yr) 6.1%

CrCl: 103 mL/min

Fasting Lipid Panel

<table>
<thead>
<tr>
<th>TC 225</th>
<th>TG 165</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL 43</td>
<td>LDL 149</td>
</tr>
</tbody>
</table>

Family History:
Mother: deceased, CVA @ 68yo
Father: alive, glaucoma, HTN

Social History:
No EtOH / tobacco + cannabis, OMMP
Questions – Think Pair Share

1. What additional information is needed / wanted to assess ASCVD risk in this individual?

2. What is this person’s statin benefit group?

3. What are the **benefits** of statin therapy in understandable / layman’s terms?

4. What are the **risks** of statin therapy in understandable / layman’s terms?
1. What additional information is needed / wanted to assess ASCVD risk in this individual?
2. What is this person’s statin benefit group?
3. What are the **benefits** of statin therapy in understandable / layman’s terms?
4. What are the **risks** of statin therapy in understandable / layman’s terms?
• Statin Guideline Review
• Statin benefit
• Pre-Diabetes identification and mgmt
• FDA advisory

- WOSCOPS, 1995
- JUPITER, 2008
Randomized Control Trials: Primary Prevention

1. West of Scotland Coronary Prevention Study (WOSCOPS)
 - Primary Outcome: **Pravastatin** on incidence of MI, CHD-related death in men with **hypercholesterolemia**

2. Justification for the Use of Statin in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER)
 - Primary Outcome: **Rosuvastatin** on incidence of Major Adverse Cardiac Events in persons with **hsCRP > 2 without hyperlipidemia**
West of Scotland Coronary Prevention Study5 (and Sub-Study6), 1995

- Sub-study Hypothesis: Pravastatin \textbf{delays} incident DM
 - \textit{WHY??} anti-inflammatory, “pleiotropic” effects of statins

- Sub-study Objective: Evaluate incidence of NODM with Pravastatin
- Total of \textbf{5,974} randomized with a 3.5 – 6.1 year follow-up

<table>
<thead>
<tr>
<th>Sub-study Included</th>
<th>Sub-Study Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men 45-64 years old</td>
<td>Women</td>
</tr>
<tr>
<td>\textbf{> 2 post-randomization BG readings} (checked every 6 months for duration of study)</td>
<td>\textbf{Self-reported DM} at baseline (N=76) \textbf{\textbullet} Impaired FPG (\textbf{\textgreater} 126 mg/dL) at baseline (N=72)</td>
</tr>
</tbody>
</table>
Baseline Demographics

*combined placebo and pravastatin groups

<table>
<thead>
<tr>
<th>Category, mean (SD)</th>
<th>Progression to DM was observed (N=139)</th>
<th>All Subjects (N=5974)</th>
</tr>
</thead>
</table>
| Age 55.6 (± 5.7) years | 55.2 | **NODM** was significantly associated with TG, BMI, FPG, pravastatin
| FPG 98.8 (± 12.4) mg/dL | 84.96 | Pravastatin reduced risk for NODM by 30% (HR 0.70 (0.50-0.99), p=0.042) |
| Systolic 138 (± 18) mmHg | 135 | |
| BMI 27.7 (± 3.6) kg/m² | 25.9 | |
| TG 193 (± 131) mg/dL | 148 | |
| Pravastatin 41% received | 50% | |

*Individuals progressing to DM on were less likely to have received pravastatin; higher average BMI, TG, BP, and FPG (unknown whether significantly different)
Justification for the Use of Statin in Prevention: an Intervention Trial Evaluating Rosuvastatin

- Primary outcome: Incidence of Major Adverse Cardiac Events (MACE)
 - Secondary outcomes: individual components of MACE along with all-cause mortality, safety (i.e. DM)
- Randomized (1:1), prospective double-blinded, multicenter placebo-controlled trial
- Total of 17,802 randomized with median 2 year follow-up

<table>
<thead>
<tr>
<th>Included</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Men > 50 y.o.</td>
<td>• Known CVD or DM</td>
</tr>
<tr>
<td>• Women > 60 y.o.</td>
<td>• Uncontrolled hypertension:</td>
</tr>
<tr>
<td></td>
<td>• SBP >190 or DBP >100mmHg</td>
</tr>
<tr>
<td></td>
<td>• Any use of a lipid-lowering agent</td>
</tr>
<tr>
<td>• LDL <130mg/dL</td>
<td>• Hepatic dysfunction (ALT >2xULN)</td>
</tr>
<tr>
<td>• TG <500mg/dL</td>
<td>• Creatine kinase >3xULN</td>
</tr>
<tr>
<td>• hsCRP >2.0mg/L</td>
<td>• Serum Creatinine >2.0mg/dL</td>
</tr>
</tbody>
</table>
JUPITER7,8

Baseline Demographics (N= 17,802)
combined placebo and rosuvastatin groups

<table>
<thead>
<tr>
<th>Category</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>55.2 (± 5.5) years</td>
</tr>
<tr>
<td>Gender (Male)</td>
<td>61.8%</td>
</tr>
<tr>
<td>Race (Black or Hispanic)</td>
<td>16.6%</td>
</tr>
<tr>
<td>A1c (IQR)</td>
<td>5.7% (IQR 5.4-5.9%)</td>
</tr>
<tr>
<td>HTN</td>
<td>57%</td>
</tr>
<tr>
<td>FPG (IQR)</td>
<td>94 mg/dL (87-102)</td>
</tr>
<tr>
<td>Metabolic Syndrome</td>
<td>41.4%</td>
</tr>
</tbody>
</table>

Incidence of New Onset DM

<table>
<thead>
<tr>
<th>Hb-A1c (%) at 24-months</th>
<th>Physician-reported diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 5.9% statin vs. 5.8% placebo; p=0.001</td>
<td>• 270 statin vs. 216 placebo; p=0.01</td>
</tr>
</tbody>
</table>

Rosuvastatin increased risk for NODM by \textbf{28\%}

(HR 1.28 (1.07-1.54), p=0.01)
Which of the following trials showed a protective effect from statins?

<table>
<thead>
<tr>
<th>Trial</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>West of Scotland Coronary Prevention Study (WOSCOPS)</td>
<td>Justification for the Use of Statin in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER)</td>
</tr>
<tr>
<td>Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS)</td>
<td>Study of Coronary Atheroma by Intravascular Ultrasound: Effect of Rosuvastatin Versus Atorvastatin (SATURN)</td>
</tr>
</tbody>
</table>
• Statin Guideline Review
• Statin benefit
• Pre-Diabetes identification and mgmt
• FDA advisory

• WOSCOPS, 1995
• JUPITER, 2008

• Rajpathk et al., 2009
• Sattar et al., 2010
Rajpathk et al., 2009⁹

Meta-analysis including 6 statin trials with 57,593 participants and mean follow-up x 2 years

First large meta-analysis to pool effects from multiple primary and secondary prevention trials

Used only published data
<table>
<thead>
<tr>
<th>PRIMARY PREVENTION</th>
<th>SECONDARY PREVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>West of Scotland Coronary Prevention Study (WOSCOPS)</td>
<td>Long-term Intervention with Pravastatin in Ischemic Disease (LIPID)</td>
</tr>
<tr>
<td>• RR (placebo) 0.69 (0.49-0.96)</td>
<td>• OR (placebo) 0.95 (0.77-1.16)</td>
</tr>
<tr>
<td>Anglo-Scandinavian Cardiac Outcomes Trial –Lipid Lowering Arm (ASCOT-LLA)</td>
<td>Controlled Rosuvastatin Multinational Study in Heart Failure (CORONA)</td>
</tr>
<tr>
<td>• OR (placebo) 1.14 (0.9 – 1.43)</td>
<td>• OR (placebo) 1.13 (0.86 – 1.49)</td>
</tr>
<tr>
<td>Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER)</td>
<td>Heart Protection Study (HPS)</td>
</tr>
<tr>
<td>• OR (placebo) 1.25 (1.05 – 1.49)</td>
<td>• OR (placebo) 1.14 (0.98 – 1.33)</td>
</tr>
</tbody>
</table>
Results

Heterogeneity: Low
Publication bias: None

Trials included

<table>
<thead>
<tr>
<th>Trials included</th>
<th>No. Statins / Total (%)</th>
<th>No. Placebo / Total (%)</th>
<th>Study Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPS</td>
<td>335/7291 (4.6)</td>
<td>293/7252 (4.0)</td>
<td>1.14 (0.98, 1.33)</td>
</tr>
<tr>
<td>ASCOT</td>
<td>154/3910 (3.9)</td>
<td>134/3863 (3.5)</td>
<td>1.14 (0.90, 1.43)</td>
</tr>
<tr>
<td>LIPID</td>
<td>172/3970 (4.3)</td>
<td>181/3967 (4.6)</td>
<td>0.95 (0.77, 1.16)</td>
</tr>
<tr>
<td>CORONA</td>
<td>100/1771 (5.6)</td>
<td>88/1763 (5.0)</td>
<td>1.13 (0.86, 1.49)</td>
</tr>
<tr>
<td>JUPITER</td>
<td>270/8901 (3.0)</td>
<td>216/8901 (2.4)</td>
<td>1.25 (1.05, 1.49)</td>
</tr>
<tr>
<td>Combined</td>
<td>1031/25843 (4.0)</td>
<td>912/25776 (3.5)</td>
<td>RR = 1.13 (1.03, 1.23) p = 0.008</td>
</tr>
</tbody>
</table>

Excluding WOSCOPS (n = 5)

Statins increased risk for NODM by 13%
(excluding WOSCOPS)
Sattar et al., 201010

Meta-analysis including 13 statin trials with 91,140 participants

– 6 trials with published data (included in Rajpathk analysis)
– 7 trials with unpublished DM data

New trials...
<table>
<thead>
<tr>
<th>PRIMARY PREVENTION</th>
<th>SECONDARY/MIXED (1 & 2) PREVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TEXCAPS)</td>
<td>Scandinavian Simvastatin Survival Study (4S)</td>
</tr>
<tr>
<td>• Primary Prevention</td>
<td>• Secondary Prevention</td>
</tr>
<tr>
<td>• OR (placebo) 0.98 (0.70 – 1.38)</td>
<td>• OR (placebo) 1.03 (0.84-1.28)</td>
</tr>
<tr>
<td>Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA)</td>
<td>Effect of rosvastatin in patients with chronic heart failure (GISSI-HF)</td>
</tr>
<tr>
<td>• Primary prevention</td>
<td>• Primary and Secondary prevention in CHF</td>
</tr>
<tr>
<td>• OR (no treatment) 1.07 (0.86-1.35)</td>
<td>• OR (placebo) 1.10 (0.89-1.35)</td>
</tr>
<tr>
<td>Results of the low-dose (20 mg) pravastatin GISSI Prevenzione trial in 4271 patients with recent myocardial infarction (GISSI-PREVENZIONE)</td>
<td></td>
</tr>
<tr>
<td>• Secondary Prevention</td>
<td></td>
</tr>
<tr>
<td>• OR (control) 0.89 (0.67 – 1.20)</td>
<td></td>
</tr>
<tr>
<td>Prospective study of pravastatin in the elderly at risk (PROSPER)</td>
<td></td>
</tr>
<tr>
<td>• Primary & Secondary Prevention</td>
<td></td>
</tr>
<tr>
<td>• OR (placebo) 1.32 (1.03-1.69)</td>
<td></td>
</tr>
<tr>
<td>Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT- LLT)</td>
<td></td>
</tr>
<tr>
<td>• Primary > Secondary Prevention</td>
<td></td>
</tr>
<tr>
<td>• OR (control) 1.15 (0.95-1.41)</td>
<td></td>
</tr>
</tbody>
</table>

All data are unpublished
Results

9% increased risk for NODM (OR 1.09 (95%CI 1.02-1.17))

- NNH (statin x 4yrs) 255 (95% CI 150-852)
- ONE excess case per 1000 patient-years

Prevent FIVE (5) CV events per 1000 patient-years
Covariates associated with NODM

- Older age associated with higher incidence NODM
 - Pravastatin: 55 years WOSCOPS versus 75 years PROSPER

- No effect on outcome:
 - BMI
 - Change in LDL-C during treatment
 - Statin properties (i.e. hydrophilic versus lipophilic)

Statistical method: Meta-Regression
Conclusions *from meta-analyses*

- No evidence of a protective role from statins
- Small, but significant increase in risk for NODM
 - Attenuated with inclusion of all available evidence
- Clear CVD benefits outweigh risk for NODM
- Certain populations *(i.e. CHF in CORONA, GISSI HF)* did not see meaningful CVD benefit from statins…but still have increased risk for NODM
Results from meta-analyses characterize the risk for statin-induced NODM as:

<table>
<thead>
<tr>
<th>Non-statistically significant, but a relatively large risk</th>
<th>Statistically significant and a relatively large risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-statistically significant and a relatively small risk</td>
<td>Statistically significant, but a relatively small risk</td>
</tr>
</tbody>
</table>
Case 2

76 year old Caucasian woman is being seen for routine follow-up with PCP. The patient lives at home alone and prepares most meals for herself. She values her independence and feels she is healthy for her age.

Problem list:
- CKD Stage 3B (x5 yrs)
- Gout (x10 yrs)
- HFpEF (EF 55%)

Medications:
Allopurinol 100mg PO daily
Carvedilol 12.5mg PO BID

Social History:
No EtOH / tobacco or illicit substances

BMI: 23 kg/m²

Vitals (today):
BP: 118/69 mmHg
HR: 65 bpm
RR: 17 bpm

Family History:
Mother: unknown
Father: MI (84yo)

Labs:

<table>
<thead>
<tr>
<th>Na⁺ 140</th>
<th>Cl⁻ 100</th>
<th>BUN 15</th>
<th>FPG 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺ 4.5</td>
<td>HCO₃⁻ 26</td>
<td>SCr 1.1</td>
<td></td>
</tr>
</tbody>
</table>

A1c (today) 5.9%
A1c (1yr) 6.1%
CrCl: 43 mL/min
urine alb:creat: 10 mg/g

Fasting Lipid Panel

<table>
<thead>
<tr>
<th>TC 180</th>
<th>TG 115</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL 40</td>
<td>LDL 117</td>
</tr>
</tbody>
</table>

ACC/AHA 10-yr ASCVD risk: 13.7%
Questions – Think Pair Share

1. Is this patient indicated for statin therapy / what is her statin benefit group?

2. Is this patient at risk for new onset diabetes?
1. Is this patient indicated for statin therapy / what is her statin benefit group?
2. Is this patient at risk for new onset diabetes?
3. How does this change the risk/benefit discussion?
Flow

Background
- Statin Guideline Review
- Statin benefit
- Pre-Diabetes identification and mgmt
- FDA advisory

RCTs
- WOSCOPS, 1995
- JUPITER, 2008

Meta-Analyses
- Rajpathk et al., 2009
- Sattar et al., 2010
- Pitavastatin:
 - J-PREDICT, 2013
 - Vallejo-Vaz et al., 2015
- Other analyses and recap

Statin Comparison

Background Meta-Analyses
Statin Comparison

Rajpathk et al., 2009
Sattar et al., 2010
Pitavastatin:
 - J-PREDICT, 2013
 - Vallejo-Vaz et al., 2015
- Other analyses and recap
Risk differences between statins
Compare and Contrast: statins & goals

Preiss et al. (2011)^11
- Evaluated NODM risk based on statin-intensity
- **High vs. moderate-intensity** OR 1.12 (1.04 – 1.22)
 *No heterogeneity or publication bias

Navarese et al. (2013)^12
- Evaluated NODM risk of individual statins/doses
- **Pravastatin** 40mg/day vs. placebo OR 1.07 (0.86 – 1.30) *lowest risk*
- **Rosuvastatin** 20mg/day vs. placebo OR 1.25 (0.82 – 1.90) *highest risk*

Cai et al. (2014)^13
- Evaluated NODM risk based on **LDL goals** (< 70; 70-100; >100mg/dL goals)
- Pooled NODM target **LDL < 70 mg/dL** vs. control OR 1.33 (1.14 – 1.56)
- Pooled NODM target **LDL > 100 mg/dL** vs. control OR 1.01 (0.92 – 1.10)

More aggressive, higher-intensity therapies seem to confer higher risk
Priess et al., 2009

Favorable risk / benefit ratio when using high-intensity versus moderate-intensity statin for secondary prevention

NNT 155

CV events prevented

NODM cases

NNH 498

CV events prevented

NNT 155
Individual agents

Focus: pravastatin and pitavastatin
Pitavastatin (Livalo®) 1mg, 2mg, 4mg

FDA approved in 2009; Moderate-intensity statin

<table>
<thead>
<tr>
<th>Lipid Parameter</th>
<th>Pitavastatin 2mg / day</th>
<th>Atorvastatin 10mg / day</th>
<th>Pitavastatin 4mg / day</th>
<th>Atorvastatin 20mg / day</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL (mean reduction, SD)</td>
<td>-37.9% (14)</td>
<td>-37.8% (15.6)</td>
<td>-44.6% (15)</td>
<td>-43.5% (16.2)</td>
</tr>
<tr>
<td>Non-HDL (mean reduction, SD)</td>
<td>-34.7% (13)</td>
<td>-35.2% (15.2)</td>
<td>-41.1% (14.2)</td>
<td>-40.6% (15.2)</td>
</tr>
<tr>
<td>HDL (mean increase, SD)</td>
<td>+4% (16.5)</td>
<td>+3% (16.9)</td>
<td>+5% (16.7)</td>
<td>+2.5% (13.7)</td>
</tr>
</tbody>
</table>

ClinicalTrials.gov Identifier: NCT00249249

Pitavastatin 2-4mg ≈ Atorvastatin 10-20mg
Japan Prevention Trial of Diabetes by Pitavastatin in Patients with Impaired Glucose Tolerance (J-PREDICT)15

Objective: Evaluate the effect of pitavastatin on the incidence of diabetes using a prospective study design

Primary outcome: incidence of NODM
* determined by a 2-hr BG \geq 200 mg/dl or a FPG \geq 126 mg/dl measured at least once

Design: Multicenter, open-label, RCT (pitavastatin versus lifestyle modification) in persons with impaired glucose tolerance (IGT)

Enrolled: 1,269 participants
Incidence of Diabetes on Pitavastatin

- **Incidence:** 163 (pitavastatin) versus 186 (control) NODM cases per 1,000 person-years

Cumulative HR for NODM

Hazard Ratio 0.82 (95% CI: 0.68-0.99)

p = 0.041

18% decrease in NODM incidence with Pitavastatin compared to control.
Conclusions

- Limited conclusions can be made from a single study
- Might not be a class-effect

<table>
<thead>
<tr>
<th>Pitavastatin pros/cons assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
</tr>
<tr>
<td>Marginal reduction in risk for NODM in at-risk population</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Vallejo-Vaz et al., 2015

Meta-analysis including 15 trials with 4,815 non-diabetic participants taking pitavastatin or control*

- 4 trials with data provided by the investigators
- 11 trials provided by Kowa Pharmaceutical (mft.)

None of the other meta-analyses have included pitavastatin

*Control ranged from Placebo to active comparator (e.g. atorvastatin, simvastatin)
Pitavastatin effects on Hb-A1c

Correspondingly reduced NODM by 30% (not statistically significant)

Mean Difference (95%CI) -0.03 (-0.11, 0.05)

Heterogeneity: Moderate
Publication bias: None
Stratifying based on duration…

Effect on Hb-A1c is related to duration of therapy

1.9.1 Follow-up = 12 weeks

<table>
<thead>
<tr>
<th>Study</th>
<th>Hb-A1c Mean</th>
<th>Effect Size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPAGO-T</td>
<td>5.83</td>
<td>-0.03 [-0.19, 0.13]</td>
</tr>
<tr>
<td>PREVAIL-US</td>
<td>5.77</td>
<td>0.03 [-0.05, 0.11]</td>
</tr>
<tr>
<td>VISION</td>
<td>5.80</td>
<td>0.10 [-0.32, 0.52]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>0.02 [-0.05, 0.09]</td>
</tr>
</tbody>
</table>

Heterogeneity = 0%

1.9.2 Follow-up >12 weeks

<table>
<thead>
<tr>
<th>Study</th>
<th>Hb-A1c Mean</th>
<th>Effect Size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUTH</td>
<td>5.77</td>
<td>-0.20 [-0.63, 0.23]</td>
</tr>
<tr>
<td>COMPACT-CAD</td>
<td>5.55</td>
<td>-0.10 [-0.20, 0.00]</td>
</tr>
<tr>
<td>INTREPID</td>
<td>5.33</td>
<td>-0.13 [-0.21, -0.04]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td>-0.13 [-0.21, -0.04]</td>
</tr>
</tbody>
</table>

Heterogeneity = 0%

Effect on Hb-A1c

- 12 week f/u
- >12 week f/u
Pravastatin
10-20mg = low-intensity ; 40-80mg = moderate intensity

• Previously reviewed:
 – West of Scotland Study (WOSCOPS)5,6, although results are contested*
 – Meta-analyses indicating pravastatin has lower risk compared to other statins12

• New:
 – Pravastatin has been shown to improve measures of insulin sensitivity compared to control17
Take Home: Differences between statins

Most commonly used statins increase risk for NODM

More aggressive, higher-intensity therapies seem to confer higher risk

However…

Pitavastatin & Pravastatin consistently demonstrate a neutral (sometimes risk reducing) effect on NODM
Which statins are associated with neutral (sometimes lower) risk for NODM?

<table>
<thead>
<tr>
<th>Rosuvastatin</th>
<th>Simvastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td>Pravastatin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rosuvastatin</th>
<th>Pitavastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lovastatin</td>
<td>Pravastatin</td>
</tr>
</tbody>
</table>
Case 3

48 year old Caucasian man is being seen for routine follow-up with PCP. He exercises 1-2 days/week and rarely eats out.

Problem list:
- T2DM (x10 yr)
- Hypertension (x15 yr)

Medications:
Lisinopril 10mg PO daily
Metformin 500mg (4) tabs PO daily
Aspirin 81mg PO daily

Social History:
No EtOH / tobacco or illicit substances

Family History:
Mother: alive, HTN
Father: alive, T2DM

Problems:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2DM</td>
<td>x10 yr</td>
</tr>
<tr>
<td>Hypertension</td>
<td>x15 yr</td>
</tr>
</tbody>
</table>

Labs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>140 mEq/L</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>100 mEq/L</td>
</tr>
<tr>
<td>BUN</td>
<td>15 mg/dL</td>
</tr>
<tr>
<td>FPG</td>
<td>140 mg/dL</td>
</tr>
<tr>
<td>K⁺</td>
<td>4.0 mEq/L</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>26 mEq/L</td>
</tr>
<tr>
<td>SCr</td>
<td>1.1 mg/dL</td>
</tr>
</tbody>
</table>

| A₁c today | 6.9% |
| A₁c 3-months | 8.1% |

CrCl: 148 mL/min
urine alb:creat: 15 mg/g

Vitals (today):
BP: 139/89 mmHg
HR: 75 bpm
RR: 17 bpm
BMI: 41 kg/m²

ACC/AHA 10-year ASCVD risk: 14.7%

Fasting Lipid Panel:

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>250 mg/dL</td>
</tr>
<tr>
<td>TG</td>
<td>300 mg/dL</td>
</tr>
<tr>
<td>HDL</td>
<td>35 mg/dL</td>
</tr>
<tr>
<td>LDL</td>
<td>155 mg/dL</td>
</tr>
</tbody>
</table>
Questions – Think Pair Share

1. What is this person’s statin benefit group?

2. Could statin therapy negatively impact glucose management efforts?

3. How does this change the risk/benefit conversation?
1. What is this person’s statin benefit group?
2. Could statin therapy negatively impact glucose management efforts?
3. How does this change the risk/benefit conversation?
Flow

<table>
<thead>
<tr>
<th>Background</th>
<th>RCTs</th>
<th>Meta-Analyses</th>
<th>Statin Comparison</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statin benefit</td>
<td>JUPITER, 2008</td>
<td>Sattar et al., 2010</td>
<td>Vallejo-Vaz et al., 2015</td>
<td>NODM Risk Factors and Reviews</td>
</tr>
<tr>
<td>Pre-Diabetes identification and mgmt</td>
<td>FDA advisory</td>
<td></td>
<td>Other analyses and recap</td>
<td>Why does this happen?</td>
</tr>
</tbody>
</table>

- **Statin Benefit**
- **Pre-Diabetes identification and mgmt**
- **FDA advisory**
- **WOSCOPS, 1995**
- **JUPITER, 2008**
- **Rajpathk et al., 2009**
- **Sattar et al., 2010**
- **Pitavastatin: J-PREDICT, 2013**
- **Vallejo-Vaz et al., 2015**
- **Other analyses and recap**
- **Controversies**
- **NODM Risk Factors and Reviews**
- **Why does this happen?**
Risk factors
Waters et al.18

Using data from secondary prevention trials (TNT & IDEAL)

1. FPG > 100 mg/dL (IFG)
2. Triglycerides > 150 mg/dL
3. BMI > 30 kg/m2 (Obese)
4. History of HTN

Effects of high-intensity Atorvastatin (80 mg/day)
- 0 – 1 risk factors \rightarrow no increased risk
- 2 – 4 NODM risk factors \rightarrow 24% higher risk
Navarese et al.19 recommends a “tailored” approach for statin therapy

1. Assess DM risk factors:
 - FPG > 100
 - HTN
 - BMI > 30kg/m2
 - Triglycerides >150

2. Assess statin indication:
 - Primary versus secondary prevention

3. If primary prevention + 2-4 NODM risk factors
 \rightarrow pravastatin 40mg/day + glycemic control

Conundrum: the risk for NODM is largest in patients who receive the largest benefit from statin therapy
What is the **best option** for someone who is indicated for high-intensity statin therapy, but is concerned about NODM?

<table>
<thead>
<tr>
<th>Atorvastatin 40-80mg</th>
<th>Avoid statins, recommend ezetimibe (Zetia) 10mg instead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravastatin 40-80mg</td>
<td>Pravastatin 40-80mg + Additional lipid lowering agent (e.g. bile acid Sequestrant)</td>
</tr>
</tbody>
</table>
Discussing with patients
Risk vs. Benefit

- Patients who are Pre-DM and indicated for statins should still get them if they’re eligible
 - Benefit far outweighs risk

- Patients should be made aware of the risks for statin therapy, but should understand this risk in context
 - Some patients may be receptive to NNT / NNH explained in simple, understandable terms
 - Other patients may respond better to analogies: “Needing emergency treatment in the next year from injury by a can, glass bottle, or jar” has a 1 in 1000 risk (source: BMJ clinical evidence)

- Consider reviewing 10-yr ASCVD risk before and after statin therapy (using individualized risk factors)
Embrace the next paradigm

Discussing risks and benefits in absolute terms
NET ASCVD risk reduction benefit²⁰
Controversies

1. Differentiation among statins:
 - Risk tends to be higher using high-intensity statins / goals
2. Low CVD risk primary prevention / CHF groups
 - Does risk for NODM outweigh CV benefits ?

3. Changes in monitoring DM progression
 - National Lipid Association Safety Task Force recommend checking A1c before and within 1-yr after beginning statins in at-risk individuals (expert opinion)\(^2\)

4. Why does this occur
 - Many theories, very limited in vivo data

5. Statin trials fundamentally flawed for detecting NODM
Why does this happen?
Mechanism: HMG-CoA Reductase Inhibition

• Genetic studies have demonstrated that single nucleotide polymorphisms (SNPs) of HMGCoAR that are associated with *increased weight and T2DM*\(^2^2\)
 – SNPs selected as “proxies” of the HMG-CoAR inhibition activity of statins

• Statin mechanism is associated with NODM, but does not fully explain the phenomena

• Other analyses have found statistically significant increases in body weight \(+0.53 \text{ lbs}\) in statin treatment arms.\(^2^3\)
Nakata et al., 2006

- **SLC2A4 (GLUT4)**
 - Insulin-stimulated glucose uptake into adipose
 - Decreased expression → to insulin-resistance in T2DM
 - In vitro: atorvastatin inhibited adipocyte expression of SLC2A4

In vivo: Murine T2DM model showed **insulin resistance** with atorvastatin vs. control feed

- In vivo: T2DM patients receiving atorvastatin 10mg daily had a significantly higher A1c compared to baseline

Graph:

- **A1c (%)**
- **Total (N=78)**
- **BMI < 26**
- **BMI > 26**

Images:

https://www.mnn.com www.pachd.com
Other effects on glucose metabolism

<table>
<thead>
<tr>
<th>Effect on glucose metabolism</th>
<th>Statins associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased insulin secretion</td>
<td>Atorvastatin, Simvastatin</td>
</tr>
<tr>
<td>Decreased insulin sensitivity</td>
<td>Atorvastatin, Lovastatin, Simvastatin, Rosuvastatin</td>
</tr>
<tr>
<td>Increased insulin sensitivity</td>
<td>Atorvastatin, Pravastatin, Rosuvastatin</td>
</tr>
<tr>
<td>No effect on glucose metabolism</td>
<td>Pravastatin</td>
</tr>
</tbody>
</table>
Case 1: Redux

58 year old African American man is being seen for routine follow-up with PCP. Pt does not exercise, but does cook his own meals at home

Problem list:
- Hypertension (x3 yr)
- Glaucoma (x1 yr)

Medications:
Amlodipine 10mg PO daily
Bimatoprost 0.03% i gtt OU QHS

Vitals (today):
BP: 138/79 mmHg
HR: 75 bpm
RR: 17 bpm
BMI: 31 kg/m²

Labs:
<table>
<thead>
<tr>
<th>Na⁺ 140</th>
<th>Cl⁻ 100</th>
<th>BUN 15</th>
<th>FPG 102</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺ 4.5</td>
<td>HCO₃⁻ 26</td>
<td>SCr 1.1</td>
<td></td>
</tr>
</tbody>
</table>

A₁c (today) 5.9%
A₁c (1yr) 6.1%
CrCl: 103 mL/min

Fasting Lipid Panel
<table>
<thead>
<tr>
<th>TC 225</th>
<th>TG 165</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL 43</td>
<td>LDL 149</td>
</tr>
</tbody>
</table>

Family History:
Mother: deceased, CVA @ 68yo
Father: alive, glaucoma, HTN

Social History:
No EtOH / tobacco + cannabis, OMMP
Questions – Think Pair Share

1. How many risk factors for NODM are present?

2. Does risk for NODM change initial thoughts about statin choice / dose?

3. What ongoing monitoring is recommended?
1. How many risk factors for NODM are present?
2. Does risk for NODM change initial thoughts about statin choice / dose?
3. What ongoing monitoring is recommended?
The decision is made to begin Atorvastatin 80mg PO daily.

High-intensity statin is contraindication based on 4 of the 4 risk factors for NODM

The therapy is inappropriate given the current 10-yr ASCVD risk

The addition of a statin may contribute a small risk of progression to DM

Statins have only been shown to worsen DM once a person has developed the disease

Which of the following is true in your evaluation of the chosen therapy?
References

Statins and New Onset Diabetes Mellitus

Scott Coon, PharmD, BCPS, BCACP
St. Louis College of Pharmacy
St. Louis County Department of Public Health
Scott.Coon@stlcop.edu