On Different Wavelengths: The Spectrum of Retinal Imaging Timothy J. Bennett, CRA, FOPS, OCT-C Penn State Hershey Eye Center Hershey, PA

On Different Wavelengths: The Spectrum of Retinal Imaging

- Wavelengths
- Monochromatic Photography
- Filters
- Angiography
- cSLO
- Fundus Autofluorescence

Wavelength

- Physical distance between the crests of energy waves in the electromagnetic spectrum.
- Expressed in nanometers (nm).
- Determines color.

Wavelength Specific Imaging

- Monochromatic Photography
- Fluorescein Angiography
- ICG Angiography
- Fundus Autofluorescence
- IR Reflectance

Monochromatic

- mon'o•chro•mat'ic adj.
 - Having or appearing to have only one color.
 - 2 Of or composed of radiation of a single wavelength.

Monochromatic Fundus Photography

The practice of imaging the ocular fundus with monochromatic illumination to enhance visibility of various fundus structures or pathologies.

Photographic Principles

- The use of contrast filters to alter subject tones in black-and-white photography.
- The increased scattering of light at shorter wavelengths.

Contrast Filters

- Alter the tonal rendition of different subject colors by introducing brightness differences between colors that would normally reproduce as similar tones of gray.
- Contrast filters selectively limit the range of wavelengths reaching the imaging plane.

Monochromatic: Common Uses

- "Red-free" photos before fluorescein angiography.
- Retinal nerve fiber layer photography.
- Choroidal lesions.

Short (Blue/Cyan) Wavelengths RNFL Epiretinal membranes Retinal folds, cysts

Medium (Green) Wavelengths Retinal vasculature Hemorrhages Drusen Exudates

Absorption Filters

- Organic dyes coated on acetate or glass.
- Selectively absorb certain wavelengths while transmitting others.
- Most common type of filter for general photographic use.
- Broad bandwidth and curved gradients.

Absorption Filters

- Gelatin filters
 - Easy to cut to fit aperture of fundus camera filter sliders.
- Glass filters
 - More durable than gel filter.
 - Will not warp.

Interference Filters

- Multiple thin coatings of materials with known refractive indices.
- The difference in refractive index between layers creates 'interference' and rejection of specific wavelengths.
- Efficient, linear gradients, capable of narrow bandwidth.
- Necessary for modern angiography.

Common Filters

- Available with most fundus cameras:
 - Green (red-free): 530-560nm
 - Blue-green fluorescein exciter: 490nm
 - Red filter standard on ICG capable cameras: 615-640nm

Digital Imaging

- Monochrome digital sensor (analogous to B&W film).
- Color sensor set for monochrome capture.
- Color capture through filters, with post capture conversion to grayscale.
- Full color capture with software color separations.

Multiple Monochromatic Renditions

- Photo essay approach single monochromatic renditions don't tell the whole story.
- Multiple renditions can provide additional clinical information.
- Provide a full color photo as a baseline reference.

Fluorescence Imaging

- Fluorescein angiography
- ICG angiography
- Fundus autofluorescence

Fluorescence

Fluorescence occurs when susceptible molecules (fluorophores) absorb electromagnetic energy, temporarily exciting them to a higher energy state which triggers the emission of light at wavelengths longer than the excitation source.

Fluorescence

Emission occurs only as long as the fluorescent subject remains illuminated by the exciting source (10⁻⁸ seconds).

Fluorescein Synthesized, 1871

- Fluorescein sodium is a fluorescent dye synthesized from petroleum derivatives resorcinol and phthalic anhydride.
- Synthesized by Adolf Baeyer in 1871.
- Baeyer received the Nobel Prize in 1905.

Fluorescein

- Absorbs blue light, with peak absorption and excitation occurring at wavelengths between 465-490nm.
- Fluorescence occurs at the yellow-green wavelengths of 520 to 530nm.

Indocyanine Green (ICG)

- First used as a dye in the manufacture of Kodak Wratten filters.
- Used for cardiac output and liver function studies.
- Low fluorescence efficiency compared with fluorescein.
- Poor results in early attempts with infrared films.

Peak excitation: 805nm Peak emission: 835nm Onthilalmic Photography, Same & Tyler, 2002

ICG/Near Infrared Wavelengths Longer wavelengths allow better penetration through blood and RPE, allowing visualization of the choroidal vasculature.

Scanning Laser Ophthalmoscope

- A monochrome laser scans across the fundus in a raster pattern to illuminate and record successive elements of the retina, point-bypoint at speeds up to 24 milliseconds.
- The laser delivers a very narrow wavelength band allowing for efficient excitation of fluorescence.

Scanning Laser Ophthalmoscope

mage courtesy of Ethan Priel, FOPS

A confocal aperture positioned conjugate to the focal plane of the retina blocks non imageforming light from reaching the sensor to minimize scatter and improve contrast.

Spectralis HRA

- FA excitation and blue reflectance (red free)
 - 488nm solid state laser
- ICG excitation
 - 790nm diode laser
- IR Reflectance
 - 820nm diode laser

Scanning Laser Ophthalmoscope

- Confocal imaging reduces the effects of short wavelength scatter in the ocular media and confounding AF from crystalline lens.
- Oversampling improves contrast and reduces noise. Example single image vs. oversampled
- Need example of fundus camera and SLO red free image through cataract. ?? Confounding AF from crystalline lens?

Fundus Autofluorescence (FAF)

- Fundus autofluorescence (FAF) is a diagnostic imaging technique for documenting the presence of fluorophores in the human eye.
- Fluorophores are chemical structures that possess fluorescent properties when exposed to light of an appropriate wavelength.

Fundus Autofluorescence (FAF)

- The term "autofluorescence" is used to distinguish fluorescence that can occur naturally from fluorescence that is derived from administration of fluorescent dyes.
- Optic nerve drusen, astrocytic hamartomas, lipofuscin pigments in the retina, and the aging crystalline lens are all believed to exhibit natural fluorescence.

Fundus Autofluorescence (FAF)

Procedures for documentation of highly fluorescent entities such as optic disc drusen have been employed for years with varying degrees of success using a fundus camera with fluorescein excitation and barrier filters.

Fundus Autofluorescence (FAF)

- The current use of FAF imaging centers mostly on documenting the deposition of lipofuscin in the RPE.
- Lipofuscin is a fluorescent pigment that accumulates in the RPE as a metabolic byproduct of cell function.
- Lipofuscin deposition normally increases with age, but may also occur from RPE cell dysfunction or an abnormal metabolic load on the RPE.

FAF Wavelengths

- cSLO
 - Exciter: 488 nm
 - Barrier: 521 nm (short cutoff/wide bandpass)
- Original Spaide filters:
 - Exciter: 580 nm
 - Barrier: 695 nm
- New proprietary "Spaide" filters:
 - Exciter: 535-585 nmBarrier: 605-715 nm

cSLO FAF

The cSLO uses an excitation wavelength of 488 nm and a wide band-pass barrier filter with short wavelength cutoff at 521 nm, the same settings used for fluorescein angiography.

Monochromatic Wavelengths Monochromatic Short (blue-green) Medium (green) Long (red) Monochromatic 450-490 nm 520-560 nm 610-625 nm

Angiography Wavelengths Fluorescein angiography Excitation 480-490 nm Transmission 520-530 nm ICG angiography Excitation 805 nm Transmission 835 nm

CSLO Wavelengths Spectralis cSLO Fluorescein & FAF excitation 488 nm ICG excitation 790 nm IR reflectance 820 nm

