Amphibians

- Class Amphibia
- Approx 6000 recognized species
- 3 extant orders
 - Anura
 - Caudata ([Urodela])
 - Gymnophiona ([Apoda])

Order Anura

- Frogs and toads
- Approx 90% of known amphibian species
- Wide range of species and habitats
Order Caudata

- Salamanders and newts
 - Aquatic/semiaquatic
 - Regeneration of tissues
 - Larval forms: external gills
 - Several families with incomplete metamorphosis
 - Neoteny

Order Gymnophiona

- Caecilians
 - No metamorphosis
 - Annuli create ribbed appearance
 - Rare
 - Often underground/aquatic

Special considerations

- Husbandry/environment
- Anatomy/physiology
 - Metamorphosis
- Disease processes
Husbandry/environment

• Complex and varied, with some general themes
• When in doubt, turn to natural history of species
• Temperature
 • Generally lower than most reptiles
 • POTZ
• Humidity
• Water quality
 • Extremely important

Anatomy/Physiology

• Skin
• Respiratory system
• GI
• Renal
• Musculoskeletal system

Skin

• Semi-permeable
 • Generalized
 • Localized (tree frogs, toads)
• Glands for secretions
 • Cardiac glycosides in Toads (Bufonidae/Anaxys)
 • Neuromuscular blockers (dart frogs)
• Shed usually ingested
• No fat within SC space
Respiratory system

- General respiratory strategies
 - Branchial, buccopharyngeal, cutaneous, pulmonary
- Larval form
 - Gills
- Adults
 - Lungs
 - Gills present in some species (neotony)
 - Cutaneous respiration

GI

- Larval form
 - Aquatic
 - Omnivores, herbivores, carnivores
 - Keratinized mouth parts
 - Filter feeders
- Adults
 - Carnivorous with simple GI
 - Aquatic and terrestrial
 - Changes with metamorphosis
 - Teeth

Renal

- Paired coelomic kidneys
 - Pronephric to mesonephric depending on species
- Urinary bladder present
- Excretions
 - Urea - most species
 - Ammonia
 - Uric acid
Musculoskeletal

- Anurans
 - 4 limbs, well developed for jumping/climbing
- Caudates
 - 4 limbs, reduced size, swimming and walking
- Gymnophiona
 - Limbless

Amphibian examination

- Largely visual depending on species
- Starts well before seeing the animal!
 - History
 - Signalment
 - Medical history
 - Husbandry
 - Housing
 - Size
 - Water quality
 - Diet
 - Temp/humidity

Amphibian examination

- Moistened powder free gloves
 - Reduces disease transmission
 - Delicate skin
Amphibian therapeutics

- Medication routes
 - Depends on the type of medication/disease condition/current health state

- PO
- IM
- SC/IL
- IV
- Topical
- Environmental

Oral medications

- Generally compounded liquids
- Challenges
 - Species/size
 - Volume to be administered
 - Temperament
 - Ability to handle safely

Oral medications

- Administering meds
 - Measuring the amount
 - Insulin syringes without needles
 - Micropipettes
 - Expensive for uncommon species
- Opening the mouth
 - Small guitar picks
 - Rigid paper (business cards)
Intramuscular injections

- More direct application
- Warning with selected medications
 - Enrofloxacin - pH concerns
- Injection sites
 - Forelimb mm.
 - Hindlimb mm.

Subcutaneous/intralymphatic injections

- Lack of fat in SC, decreased space
- Over urostyle
 - Intralymphatic injections
- Limited medications
- Direct route
- Great route for fluid therapy

Intravenous administration

- Lack of great options for sites and meds
- Sedation needed
 - Selected cases
Blood collection sites

Anurans
- Ventral abdominal vein
- Lingual plexus
- Femoral vein
- Heart
- Facial vein/musculocutaneous vein

Salamanders/newts
- Ventral tail vein
- Heart
- Femoral vein

Topical medication

- Different than topical meds for mammals
- Skin permeability
 - High level of absorption
 - Administration of injectable meds topically
- Limited medications
 - Watch for pH issues
 - Watch for carriers in medications
 - Avoid oily meds

Environmental applications

- Temperature
 - Cooler temperatures are better for amphibians
 - Heat stress possible
- Fluids
 - Intralymphatic fluids
 - Soaking
 - Intracoelomic?
Current updates

• Exotic Animal Formulary 5th ed, 2017
• Literature review from 2008-2016
• Updates on amphibian therapeutics
 • Analgesia
 • Sedation/Anesthesia
 • Antibiotics
 • Antifungals
 • Nutritional supplementation

General supportive care

• Fluid therapy
 • Fluid choice
 • Amphibian rings solution
 • Plasmalyte with dextrose
 • Balanced electrolyte solutions
 • Does it matter?
 • Osmolality vs volume replenishment

Analgesia

• What do we know?
 • Dosing for opioids may be radically different than mammals
 • Buprenorphine 38-50mg/kg in some species (red spotted newts, leopard frogs)
 • NSAIId
 • Meloxicam reduces circulating prostaglandin E2 levels 24hr post 0.1mg/kg dosing in American bullfrogs
 • Flunixin meglumine appears to be the NSAID of choice in Xenopus
Analgesia

• Don’t we know?
 • Pretty much everything else
 • How effective is meloxicam as an NSAID?
 • What are the appropriate opioid pain medications?

Anesthesia/sedation

• Injectable meds
 • Alfaxalone
 • IM, IV, intracoelomic
 • Propofol
 • Intracoelomic
 • Deep anesthesia in tiger salamanders
 • Mild sedation in Sonoran desert toads
 • Intracoelomic
 • African clawed frogs

• Topical
 • Metomidate hydrochloride
 • Bath immersion
 • Great for sedation in Rana pipiens, but not surgical anesthesia
 • Sevoflurane
 • Topical gel mixture (distilled water, non-spermicidal jelly, sevoflurane)
 • American tree frogs
 • Isoflurane
 • Topical gel mixture (distilled water, non-spermicidal jelly, isoflurane)
 • American tree frogs
 • Noted skin irritation with application
Anesthesia/sedation

- Topical anesthesia
 - Tricaine methanesulfonate (MS-222)
 - Buffer to pH 7.0
 - Sodium bicarbonate
 - Varying ranges of effect
 - Much higher dosing than for fish
 - 0.5-2g/L
 - Bath to effect
 - Reverse with fresh water baths

Antibiotics

- Generalized bacterial infections
 - Common offenders
 - Aeromonas
 - Pseudomonas
 - Chlamydia/Chlamydophila spp.
 - Streptococcus
 - Staphylococcus
 - All antimicrobial choices should be made based on clinical signs and appropriate diagnostics
 - Culture and sensitivity
 - Gram stain

What’s new?

- Enrofloxacin
 - Several tissue concentration studies supporting 10mg/kg dosing
 - Xenopus laevis - IM or SC route
 - Coqui frogs - topical route
 - Increased concentration in the kidneys and liver
Antifungals

• Chytridiomycosis
 • Batrachochytrium dendrobatidis
 • Varying species of amphibians affected
 • Tadpoles and some species may be subclinical carriers
• Clinical signs
 • Death
 • Dehydration
 • Skin lesions
 • More likely from secondary infections

Antifungals

• Chytridiomycosis
 • Life cycle
 • Temperature dependent (23°C critical temp)
 • Various treatments have been evaluated
 • Always confirm treatment efficacy with PCR testing
 • Subclinical infections common

Antifungals

• Treatments
 • Temperature
 • 30°C ±10d for bullfrogs
 • Caution with sensitive species
 • Florfenicol
 • Reduces zoosporangia numbers, does not eliminate infection
 • GI and renal toxicity in tadpoles at 100μg/mL
 • Chloramphenicol
 • Continuous emerion with aggressive supportive care in debilitated Australian green tree frogs
Antifungals
• Treatments
 • Itraconazole
 • Topical treatments appear to be more effective for chytridiomycosis
 • Bath treatments x5min at varying concentrations
 • Terbinafine
 • Topical low dose therapy
 • Various species in study, cleared infections, confirmed by PCR

Antifungals
• Treatments
 • Voriconazole
 • Topical spray daily for 7 days
 • Worked in vivo for various species of poison-dart frogs
 • Poor results in vitro

Antifungals
• Batrachochytrium salamandrivorans
 • Salamanders and newts
 • Combination therapy for 10 days
 • Voriconazole, Polymyxin E, Elevated temperature
 • No effect at lower temperature (20 vs 15 oC)
Anti-virals?

- **Ranavirus**
 - Iridoviridae family
 - Large double stranded DNA viruses
 - Frog virus 3 (FV-3) and FV-3 like viruses
 - Worldwide distribution
- **Transmission**
 - Relatively stable in aquatic environments
 - Contaminated soil, direct contact, ingestion of infected tissues

Anti-virals?

- **Ranavirus**
 - No current treatments noted
 - Environmental disinfection
 - Nolvasan 0.75% for 1 min contact time
 - Sodium hypochlorite 3% for 1 min contact time
 - Virkon S 1.1% for 1 min contact time
 - Desiccation and exposure to heat (140°F) for 15-30 min

Nutritional therapies

- **Vitamin A**
 - **Products**
 - Aquasol A
 - Vitamin A gel caps
 - **Route**
 - Topical application of aquasol improved circulating vitamin A levels in foam nestling frogs compared to fortified vitamin A supplement over crickets
 - **Formulation**
 - Preformed vitamin A
 - Dietary carotenoids?
 - Increased plasma-retinol levels in false tomato frogs fed crickets injected with mixed carotenoids
 - Research deficient
Continuing amphibian education

- Professional groups
- Continuing education
- Books
- Journal articles

Professional Groups

- ARAV
- AAZV
- WAVMA

Recommended literature

- Journals
 - Journal of Herpetological Medicine and Surgery
 - Veterinary Clinics of North America: Exotic Animal Practice
 - Diseases of Aquatic Organisms
 - Journal of Zoo and Wildlife Medicine
Recommended literature

• Books
 • Amphibian Care and Captive Husbandry
 • Exotic Animal Formulary, currently in 5th ed.
 • Current Therapy in Reptile Medicine and Surgery
 • Manual of Exotic Pet Practice
 • Reptile Medicine and Surgery, 2nd ed. (New edition coming soon!)

Summary

• Amphibian medicine and therapeutics are constantly being updated
 • Mostly driven by concerns of global outbreaks of Chytridiomycosis, or by lab animal medicine
 • Large deficits are present in terms of analgesia and varying antibiotic options
 • Using evidence based medicine can drive us to identify and reduce these deficiencies through further research