Euthanasia of Exotic Species

Colin McDermott, VMD, CertAQV
Exotic and Aquatics Veterinarian
Mount Laurel Animal Hospital

Overview

• Basics of euthanasia
• Challenges of exotic species
• Owner discussion
• Species protocols

Euthanasia

• “Eu” – Good
• “Thanatos” – Death

• “Ending the life of an individual animal in a way that minimizes or eliminates pain and distress”

• AVMA Guidelines for the Euthanasia of Animals: 2013 Edition
Euthanasia decision making

Euthanizing agents

- 3 basic mechanisms:
 - direct depression of neurons necessary for life function
 - hypoxia
 - physical disruption of brain activity

- Minimize or eliminate pain, anxiety, and distress prior to loss of consciousness

Confirmation of death

- Combination of criteria
 - Lack of:
 - Pulse
 - Breathing
 - Corneal reflex
 - Response to toe pinch
 - Inability to hear heartbeat by use of stethoscope/doppler
 - Greying of mucous membranes
 - Rigor mortis
 - Rigor alone can confirm death in most species
 - AVMA guidelines
Euthanasia common procedure

• Examination
• QoL discussion with owner
• Euthanasia
 • Sedation/induction
 • Gas vs injectable
 • IV/IC overdose barbiturate or potassium chloride
 • +/- IV

What about exotics?

• Quality of life challenges
• Owner personalities/discussions

• Vascular access?

Quality of life

• Exotics challenges
 • Normal behavior?
 • Majority prey species- meant to hide signs of disease
 • Eating/defecating normally?
 • Some animals eat constantly, others can go for 6+ months
 • Normal interactions with owner

• Owner education
Owner personalities

- Primary caretaker of animal
 - Child vs Adult
- Previous experience of caretakers
- Ability of owner to assess quality of life

Owner present or not present?

- Dependent factors
 - Species presented
 - Comfort level of doctor/technician
 - Methods of euthanasia used
 - Human health hazards
 - Gas anesthesia
 - Type of practice
 - ER vs private practice

 - The author commonly allows the owner to be present for IM sedation and for the euthanasia injection in many cases

Disposal of remains

- Cremation
 - Communal or private
- Home disposal
 - Check your local laws and regulations
 - Often elected due to size of animal
 - Concern for residual drugs in environment
 - Use minimal drug dosing and best judgement
Species specifics

• All recommendations are for individual animals in a private practice setting
• General recommendations with tips and tricks
• The author acknowledges there are multiple approaches that depend on the clinical situation
• For more information, for info on group euthanasia or animals not discussed, please see the AVMA Guidelines for the Euthanasia of Animals

Drug doses

• Not discussed in detail here
• In general
 • Sedation: Administer same classes of drugs as for surgery, but at 3-5 times the dose
 • Sodium pentobarbital (use to effect)
 • Mammals - similar dosing to dog/cat - 1mL/10lb
 • Birds - 1mL/1kg
 • Reptiles/amphibians - 1mL/300g
 • Potassium chloride
 • 1 to 2 mmol/kg (75-150 mg/kg) IV
 • Must be done under sedation

Small mammals

• Rabbits
• Guinea Pigs
• Chinchillas
• Ferrets
• Hedgehogs
• Hamsters/mice
Rabbits

• Medication sites
 • IM injection sites - Epaxial mm, semimembranous/semitendinosus mm.

• Vascular access
 • IVC placement - cephalic, lateral saphenous, marginal ear vein
 • IV access - cephalic, lateral saphenous, marginal ear vein

• Alternate sites
 • Intrarenal injection
 • Intrahepatic injection
 • Intracardiac injection

Guinea pigs/chinchillas

• Medication sites
 • IM injection sites - Epaxial mm, semimembranous/semitendinosus mm.

• Vascular access
 • IVC placement - cephalic, lateral saphenous
 • IV access - cephalic, lateral saphenous

• Alternate sites
 • Intrarenal injection
 • Intrahepatic injection
 • Intracardiac injection

Intracardiac injection

• Caudal approach
 • Animal in dorsal recumbency
 • Needle entry at the point of the xyphoid on midline
 • Angle shallow to the sternum with constant negative pressure
 • Administer medication when you get blood drawn back
Ferrets

- Medication sites
 - IM injection sites: epaxial mm, semimembranosus/semitendinosus mm.

- Vascular access
 - IVC placement: cephalic, lateral saphenous, jugular (difficult)
 - IV access: cephalic, lateral saphenous, cranial vena cava

- Alternate sites
 - Intrarenal injection
 - Intrahepatic injection
 - Intracardiac injection - More caudal than other mammals

Hedgehogs

- Challenges
 - Spined skin dorsally
 - Tight ball formation when threatened

- Consider inhalant anesthesia to facilitate injections

- Medication sites
 - IM injection sites: semimembranosus/semitendinosus mm.

Hedgehogs

- Vascular access
 - IVC placement: cephalic, lateral saphenous
 - IV access: cephalic, lateral saphenous, jugular vein

- Alternate sites
 - Intrahepatic injection
 - Intracardiac injection
Hamsters/Mice

• Medication sites
 • IM injection sites: Epaxial mm, semimembranosus/semitendinosus mm.
 • Gas anesthesia
• Vascular access
 • IV access: cephalic, lateral saphenous
• Alternate sites
 • Intrarenal injection
 • Intrahepatic injection
 • Intracardiac injection

Birds

• Psittacines
• Passerines
• Chickens
• Ducks
• Raptors

Birds

• High metabolic rate
 • Inhalants work rapidly
• Highly vascular muscle
 • IM injections more rapidly absorbed than mammals
• Veins very superficial
Psittacines/passeres

- Medication administration:
 - IM: pectoralis mm.
 - Intranasal: Midazolam
 - Gas administration via mask

- Vascular access:
 - IVC: jugular (right) v., mediometatarsal v., basilar v.
 - IV access: Jugular (right) v., mediometatarsal v., basilar v.
 - IO catheterization:
 - Proximal tibiotarsus or distal ulna
 - NEVER HUMERUS OR FEMUR: air sacs within bone in many species

Psittacines/passeres

- Alternate site
 - Intrahepatic injection: avoid air sacs
 - Intracardiac injections
 - Long needles, can be dorsal or ventral approach behind keel

Chickens/waterfowl

- Differences:
 - Generally farm animals/outdoor animals
 - Prominent tarsometatarsal veins for IV access
 - Carcass remains
 - Recommended cremation
 - If taking home, environmental concerns based on drugs used
Raptors

• Very similar to psittacines in process and site selection for medications
• Know your local and federal laws for wildlife
 • Especially for endangered species
• Form a relationship with local wildlife rehab as a resource

Reptiles

• Lizards
• Snakes
• Turtles
• Crocodilians

Reptiles

• General considerations
 • HEAT
 • Optimal temperature zone for drug metabolism
 • 80-85°F in general
 • Warm for at least 20-30 minutes prior to any drugs, ideally
 • 30 min post heating, then sedation
 • When sedate, then administer euthanasia solution
Reptiles

• General considerations
 • HEAT
 • Breath holding and shunting (for hours in some species)
 • Non-acceptable methods
 • Hypothermia
 • Decapitation as sole agent
 • Brain has high tolerance for hypoxia and hypotensive conditions
 • Pithing post decapitation needed
 • Hypothemia
 • Decapitation as sole agent

Reptiles

• Confirmation of death
 • Rigor mortis
 • Lack of corneal reflex
 • Lack of laryngeal reflex
 • Lack of heartbeat >5 minutes (in majority of species)

Lizards

• Medication administration
 • IM - musculature of the front limbs
 • Injections in front legs/tail may be caught in renal portal system
 • Gas anesthetics - caution with breath holding

• Venous access
 • SI-ventral lad v, ventral abdominal v. (visible in some species)
 • IO - humerus, femur

• Alternate sites
 • Intraperitoneal injection
 • Thoracic grid in most species
 • Mention - more caudal
 • Direct injection through parietal eye into brain - Under heavy sedation only
Snakes

- Medication administration
 - IM-epaxial mm, first half of body
 - Injects in cauda/half may be caught in renal portal system
 - Gas anesthetics
 - Can directly intubate without prior sedation in the majority of snakes
- Venous access
 - Fr-ventral tail v, heart (common site of blood collection), jugular v (less practical)
- Alternate sites
 - Intraperitoneal injection
 - Intracardiac injection
 - 1/4 to 1/3 of the way down the body, can visualize movement through skin

Turtles and tortoises

- Euthanasia challenges
 - Long time to process drugs
 - Hearts can beat for hours post brain death
- General plan:
 - Sedatives to the point of anesthesia
 - IV euthanasia solution
 - Keep warm in incubator for 12-24hr, then confirm death
 - Chalk outline to monitor for movement

Turtles and tortoises

- Medication administration
 - IM-musculature of the front limbs
 - Injects in hind limbs/hind may be caught in renal portal system
 - Gas anesthetics: Can breath hold for hours
- Venous access
 - Fr-subcarapacial sinus, jugular v, brachial v (in tortoises), dorsal tail v, ventral tail v
 - (some species)
 - IO-humerus, femur, cranial plastron
- Alternate sites
 - Intraperitoneal injection
 - Intracardiac injection
 - Ultrasound guided injection helpful
Amphibians

• Frogs
• Toads
• Salamanders/newts

Amphibians

• General considerations
 • Absorption of drugs through skin
 • Immersion bath
 • Topical medications
 • Temperature
 • Heat, but generally less than reptiles - Aim for 70-75°F

Amphibians

• Medication administration
 • IM medications in forelimbs
 • Intralymphatic injection of anesthetics
 • Gas anesthesia - caution with breath holding
 • Transcutaneous absorption of drugs - Tricaine methanesulfonate (buffered), Iso/Sevoflurane, Benzocaine hydrochloride, alfaxalone, propofol

• IV access
 • IV: Ventral abdominal v, femoral v, lingual v, ventral tail v (newts and salamanders), facial v (true frogs, Ranidae)
Amphibians

- Alternative sites
 - Intracardiac injection
 - Intrahepatic/intracoelomic injection

- Pithing as secondary euthanasia method after drug administration

Aquatic species

- Fish
- Invertebrates

Fish

- General considerations
 - Immersion bath for sedation/handling
 - Disposal of immersion water?

- Previously considered dead after 30 min of ceasing gill movement
 - Evidence to suggest need for second step in euthanasia
Fish

• Medication administration
 • Transbrachial absorption of drugs
 • Tricaine methanesulfonate (buffered), ketamine, alfentanyl, propofol

• IV access
 • IV- tail vein, intracardiac injection

Aquatic invertebrates

• Highly variable
• Expect 24-48 hours before confirmed death

• Various medications used
 • Ethanol
 • Magnesium sulfate/chloride

Resources

• AVMA Guidelines for the Euthanasia of Animals: 2013 Edition
• Exotic Animal Formulary, 5th edition
 • Sedation and anesthesia combinations and dosages
Summary

• Although there is a great species variation, the general methods are consistent
 • Heavy sedation
 • Euthanasia
• As you stray further from mammals, methods become a bit more challenging
• Take you time in discussion with owners