Different I’s of Different Beholders: Self-Monitoring and the Categorization of Self and Others

Kenneth Weadick
Randall E. Osborne*
James Penticuff
Indiana University East
Jason Young
Hunter College, CUNY
Joseph Norman
Indiana University East

Four studies examined differences between high and low self-monitors in terms of the processing of self-relevant information, categories of descriptors used to describe self and others, and basic information processing strategies. Results revealed high self-monitors use more physical appearance and social relationship adjectives to describe themselves (Study 1) and their best friends (Study 2), whereas low self-monitors utilize significantly more trait adjectives. Results from Studies 3 and 4 suggest high and low self-monitors show this same divergent use of categories and information processing strategies when recalling information about a new acquaintance and processing auditory information. The implications of these findings for the social information processing and behavioral choices of high and low self-monitors are discussed.

Individuals may use a variety of information processing strategies when organizing and categorizing the events of the social world (e.g., Gilovich, 1991; Tversky & Kahneman, 1973). Use of heuristics (or commonsense strategies for processing information) influences the inferences one can then draw from those categorizations. If individuals use differing methods to organize and process the same social experience, then it is likely they will perceive and interpret that experience quite differently (Sampson, 1978). Given the significant presence of the self in memory, it seems quite likely self will be used as a referent point for processing social information as well (e.g., Lewicki, 1983, 1984; Marks & Miller, 1987).

Many factors play a role in determining the choices an individual will make when it comes to processing information about self and others in the social world. Personality characteristics such as self-monitoring may play a role in determining how the individual will process and utilize social information as it pertains to self and others.

A multistep process may be at work when an individual processes information about self and others. Personality characteristics appear to influence the makeup of the self-concept (e.g., Greenwald, Bellezza, & Banaji, 1988); the self-concept (and the self-images that are part of it) may activate the processes associated with the self-reference effect (e.g., Lewicki, 1983, 1984); and the self-reference effect influences the perceptions that individuals will have of others (Sullivan & Harnish, 1990).

The self-reference effect suggests that self-relevant information is more efficiently processed than other information. In addition, a self-image bias can occur in which the individual utilizes self-constructs for processing information about others (Carpenter, 1988; Fong & Markus, 1982; Kuiper & Rogers, 1979; Lemon & Warren, 1974; Lewicki, 1983, 1984; Markus, Smith, & Moreland, 1985; Rogers, 1984; Banaji, 1988); the self-concept (and the self-images that are part of it) may activate the processes associated with the self-reference effect (e.g., Lewicki, 1983, 1984); and the self-reference effect influences the perceptions that individuals will have of others (Sullivan & Harnish, 1990).

The self-reference effect suggests that self-relevant information is more efficiently processed than other information. In addition, a self-image bias can occur in which the individual utilizes self-constructs for processing information about others (Carpenter, 1988; Fong & Markus, 1982; Kuiper & Rogers, 1979; Lemon & Warren, 1974; Lewicki, 1983, 1984; Markus, Smith, & Moreland, 1985; Rogers, 1984; Banaji, 1988); the self-concept (and the self-images that are part of it) may activate the processes associated with the self-reference effect (e.g., Lewicki, 1983, 1984); and the self-reference effect influences the perceptions that individuals will have of others (Sullivan & Harnish, 1990).

We gratefully acknowledge the assistance of the Departments of Psychology at the University of Texas at Austin, Luther College, and Indiana University East for the provision of materials and computer facilities in conducting this research. Additionally, we thank Dr. Daniel Gilbert for the use of his laboratory facilities in Study 2. Finally, we thank Drew Anderson, Liza Bonin, Basak Oguz, and Diane Osborne for their valuable contributions as research assistants.

Correspondence concerning this article may be addressed to Randall E. Osborne, Department of Psychology, Indiana University East, 2325 Chester Boulevard, Richmond, IN 47374. Electronic mail may be sent to reosborn@ucs.indiana.edu.

In this manner, high and low self-monitors appear to have very different ideas as to what is informative about the other people around them. Indeed, when one has very little information to go on, it is common to rely on implicit personality theories to make connections among the various bits of information (Bruner & Tagiuri, 1954; Cantor & Kihlstrom, 1986; Cantor & Mischel, 1979; Schneider, 1973). High and low self-monitors seem to have different implicit theories about the kinds of information useful in understanding self and others (Snyder & Cantor, 1980). In fact, high self-monitors may have “extensive and easily accessible stores of knowledge about other people and their typical behavior in social situations” (Snyder & Cantor, 1980, p. 223).

Low self-monitors, on the other hand, may think about others in more complex dispositional terms. For example, if they are usually thinking about themselves in terms of traits, they may also believe trait information is relevant for understanding others. As such, low self-monitors may be more likely to pay attention to the traits that seem to belong to the individual, whereas high self-monitors may be more likely to notice and pay attention to the situational behaviors and outward appearances of other individuals. Snyder and Cantor (1980) found that high self-monitoring individuals are particularly skilled at understanding situational contingencies whereas low self-monitors are usually found to be thinking in trait terms.

High and low self-monitors assign differing levels of importance to different kinds of information about self and others (e.g., Sampson, 1978). It is also possible that these individuals will rely on different descriptor categories (such as traits or physical characteristics) of information when describing their own self-concepts. Use of these categories, or cognitive prototypes (Lewicki, 1984), may initiate the self-image bias causing these persons to categorize the information they receive about others according to their own self-monitoring propensities. Although past self-monitoring research has alluded to the potential connection between self-monitoring propensities, the self-reference effect, and the manner in which high and low self-monitors categorize social information, none of the studies have documented that connection.

The present investigations are directed specifically toward addressing the mediating influence that self-monitoring propensities have that can help explain the findings in other research. Understanding the role that personality characteristics like self-monitoring play in determining the information processing strategies individuals use when trying to make sense of their social worlds may help make substantial progress toward integrating the self-concept and personality literatures.

In order to address the social processing questions outlined above, four studies were conducted using high and low self-monitoring individuals. The studies attempted to replicate the findings of Ickes, Layden, and Barnes (1978), that high self-monitors rely on role relationship descriptors to describe self, and to provide further support for Sampson’s (1978) findings that high self-monitors feel externally located self-descriptors are more important in defining who
they are. We also extend the research to include low self-monitors and to address questions of what categories of information they tend to use in defining self and others and the extent to which they seem to believe that internally located dimensions are more useful in defining their self.

It was predicted that high and low self-monitors would differ in the kinds of categories of information they would use to describe self and others. High self-monitors were expected to use external and situationally based categories of information to describe themselves and others, whereas low self-monitors were expected to use characteristic trait-based information.

STUDY 1

Study 1 employed the “Who Am I” measure (Bugenthal & Zelen, 1950; Gordon, 1968; Kuhn & McPartland, 1954) to determine the extent to which high and low self-monitors hold differing spontaneous self-concepts, as evidenced by the differential use of descriptive categories. The “Who Am I” measure is an unstructured spontaneous response technique in which participants describe their self-representations. To simplify interpretation of participants’ written protocols in response to the question “Who am I?” Gordon (1968) proposed two basic classifications of descriptors: social identity and personal attributes.

Social identity descriptors refer to social categorizations, such as roles, memberships, activities, or loyalties. In light of past research suggesting high self-monitors are more concerned with the situational appropriateness of their social identity than are low self-monitors (Snyder, 1979), it was hypothesized that high self-monitors would list relatively more social role descriptors than would low self-monitors in response to the “Who Am I?” measure.

The second classification proposed by Gordon (1968), personal attributes, includes descriptions involving physical appearance and personality traits. Given the high self-monitor’s strong concern for public images and physical appearance (Berscheid et al., 1976; Snyder et al., 1985; Snyder et al., 1988; Young, Osborne, & Snyder, 1993), it was hypothesized that high self-monitors would be more likely to mention their physical attributes than would low self-monitors. By contrast, low self-monitors have shown a stronger concern for the personality characteristics of others (e.g., Snyder et al., 1985; Snyder et al., 1988). The present research investigated whether or not this concern extended to their perceptions of themselves as well. Consequently, it was predicted that low self-monitors would mention their personality attributes in their self-descriptions more than would high self-monitors. In summary, then, Study 1 tested the hypothesis that high self-monitors would mention more physical attributes and social roles than would low self-monitors when describing themselves, whereas low self-monitors would mention more personality attributes when describing themselves than would high self-monitors.

Method

Participants

Participants were 31 male and 44 female undergraduate students in two sections of introductory social psychology at a large southwestern university. At the beginning of the semester, 75 students were administered the 18-item self-monitoring scale (Snyder & Gangestad, 1986) as part of a class exercise. The participants selected for further participation scored in the upper or lower third of the range of self-monitoring (SM) scores and included 24 high self-monitors (SM scores > 12) and 25 low self-monitors (SM scores < 8).

Procedure and Materials

During the second week of the semester, participants were administered the “Who Am I?” measure (Bugenthal & Zelen, 1950; Gordon, 1968; Kuhn & McPartland, 1954) as part of a class exercise. This measure consisted of a piece of paper with 20 lines on it, with the following instructions at the top of the sheet:

Please take about five minutes and think about who you are. On the lines below, please list 20 one- or two-word phrases that come to your mind when you think about who you are.

Three raters, who were blind to participants’ self-monitoring scores, evaluated the 20 responses participants provided and classified each one as either “physical attribute,” “social role,” “personality attribute,” or “other.” General coding classifications were provided for the raters. The average interserver reliability among the coders as assessed by the Kappa statistic was $\kappa = 4.84, p < .01$. This significant κ allows one to conclude that the raters exhibit significant agreement in their ratings.

Results and Discussion

All three hypotheses were confirmed; the mean number of descriptors listed in each category followed the predicted pattern for high and low self-monitors. These scores were entered into separate analyses of variance (ANOVAs) that yielded the expected main effects. High self-monitors ($M = 4.25$) listed more
It is important to note there are no differences in the total number of items produced because all participants were asked to generate 20 items.

The patterns of findings, though largely nonsignificant, are all in the same direction as the results using all 18 items as a single scale. The fact that the differences are relatively nonsignificant using each of the subscale factors has a number of potential explanations. First, it is possible this result confirms the very point made by Briggs and Cheek (1988): that there is a flaw in assuming the social and personal orientations of the scale are bipolar. It is also possible, however, these findings suggest the 18-item scale more adequately captures the difference in the self-monitoring dimension as it applies to the categorization of information about self and others than the subscales. Further studies will need to be conducted to determine which of these competing explanations is most viable.

It is important to note there are no differences in the total number of words, including 6 initial “practice” terms and 20 common words in each category that were rated as having the best fit in the category were selected for use in the reaction time task.

Finally, Study 2 was meant to explore whether or not high and low self-monitors differ in the extent to which they spontaneously use the above three descriptive categories when describing others. Finally, the “Who Am I” technique was also included to replicate the findings in Study 1.

Method

Participants

Participants were 23 male and 34 female undergraduates at a large southwestern university who participated in partial fulfillment of an introductory psychology course requirement. Those individuals who scored in the upper and lower third of the scoring range on the 18-item self-monitoring scale (Snyder & Gangestad, 1986) were used in the analyses. Twenty high self-monitors (SM scores > 12) and 20 low self-monitors (SM scores < 8) were included in the analyses.

Procedure and Materials

Participants first completed Markus’s (1977) “Me/Not Me” reaction time task. Sixty-six descriptive words, including 6 initial “practice” terms and 20 terms from each descriptive category (physical attribute, social role, and personality attribute), were randomly presented on a computer screen. Participants were instructed to indicate whether the term described them by pressing the appropriate key (labeled “Me” or “Not Me”) as quickly and as accurately as possible. For each participant, the average 1 It has been strongly suggested that a more appropriate test of the self-monitoring construct is to analyze the 18 items in terms of subscales identified by Briggs and Cheek (1988) and run separate analyses for each such scale. Toward this end, analyses using Subscales A and B as identified by Briggs and Cheek (1988) were created. Median splits were then performed on each of these subscales, and one-tailed t tests were conducted using high and low subscale scores rather than high and low self-monitoring scores. Use of Subscale A yielded means of 4.61 and 3.17 on physical descriptors for high and low self-monitors, respectively, t(47) = 1.10, p > .15; means of 4.17 and 3.87 on role descriptors for high and low self-monitors, respectively, t(47) = .68, p > .25; and means of 11.67 and 13.76 on trait descriptors for high and low self-monitors, respectively, t(47) = 1.07, p > .15. Use of Subscale B yielded means of 5.37 and 2.95 on physical descriptors for high and low self-monitors, respectively, t(47) = 1.89, p < .05; means of 4.23 and 3.23 on role descriptors for high and low self-monitors, respectively, t(47) = 1.03, p > .15; and means of 10.93 and 13.81 on trait descriptors for high and low self-monitors, respectively, t(47) = 1.62, p > .05.

2 This list of 60 descriptors was selected on the basis of ratings made by the coders in Study 1. After coding the Study 1 protocols, the coders were asked to indicate how well each descriptor fit into the category. These judgments were made on a 5-point Likert scale, anchored from does not fit well at all to fits extremely well. A description was only evaluated as fitting a category “well” if it was judged to fit unambiguously and uniquely into that category. If a response was not a clear example of a category, or if it fit into more than one category, it was judged as a “poor fit.” The 20 most common words in each category that were rated as having the best fit in the category were selected for use in the reaction time task.

3 This list of 60 descriptors was selected on the basis of ratings made by the coders in Study 1. After coding the Study 1 protocols, the coders were asked to indicate how well each descriptor fit into the category. These judgments were made on a 5-point Likert scale, anchored from does not fit well at all to fits extremely well. A description was only evaluated as fitting a category “well” if it was judged to fit unambiguously and uniquely into that category. If a response was not a clear example of a category, or if it fit into more than one category, it was judged as a “poor fit.” The 20 most common words in each category that were rated as having the best fit in the category were selected for use in the reaction time task.

4 It has been strongly suggested that a more appropriate test of the self-monitoring construct is to analyze the 18 items in terms of subscales identified by Briggs and Cheek (1988) and run separate analyses for each such scale. Toward this end, analyses using Subscales A and B as identified by Briggs and Cheek (1988) were created. Median splits were then performed on each of these subscales, and one-tailed t tests were conducted using high and low subscale scores rather than high and low self-monitoring scores. Use of Subscale A yielded means of 4.61 and 3.17 on physical descriptors for high and low self-monitors, respectively, t(47) = 1.10, p > .15; means of 4.17 and 3.87 on role descriptors for high and low self-monitors, respectively, t(47) = .68, p > .25; and means of 11.67 and 13.76 on trait descriptors for high and low self-monitors, respectively, t(47) = 1.07, p > .15. Use of Subscale B yielded means of 5.37 and 2.95 on physical descriptors for high and low self-monitors, respectively, t(47) = 1.89, p < .05; means of 4.23 and 3.23 on role descriptors for high and low self-monitors, respectively, t(47) = 1.03, p > .15; and means of 10.93 and 13.81 on trait descriptors for high and low self-monitors, respectively, t(47) = 1.62, p > .05.

5 This list of 60 descriptors was selected on the basis of ratings made by the coders in Study 1. After coding the Study 1 protocols, the coders were asked to indicate how well each descriptor fit into the category. These judgments were made on a 5-point Likert scale, anchored from does not fit well at all to fits extremely well. A description was only evaluated as fitting a category “well” if it was judged to fit unambiguously and uniquely into that category. If a response was not a clear example of a category, or if it fit into more than one category, it was judged as a “poor fit.” The 20 most common words in each category that were rated as having the best fit in the category were selected for use in the reaction time task.
reaction time was computed for the “Me” and “Not Me” responses within each of the three descriptive categories. Prior to testing, the “Me” and “Not Me” responses were randomly assigned to one of two keys. The “Me” key was assigned to either the “Z” on the keyboard or the “?” and vice versa for the “Not Me” key. For half of the participants, then, the data were reverse coded.

Following the computer task, participants were asked to complete the “Who Am I” task, with instructions similar to those described in Study 1. After next completing a filler task in which they filled out a short demographic questionnaire (including questions about family size, college major, hobbies, etc.), participants were instructed to respond, in an open-ended format, to the following questions: (a) What is your best friend like? and (b) What do you like about your best friend? The responses for both the “Who Am I” task and the essays describing participants’ best friends were coded using the procedure in Study 1. Finally, all participants were asked to complete the 18-item self-monitoring scale (Snyder & Gangestad, 1986).

Results and Discussion

As in Study 1, analyses were conducted comparing the mean responses of high self-monitors to the mean responses of low self-monitors within each of the three descriptive categories. Participants’ responses on the “Me/Not Me” reaction time task were measured in milliseconds and analyzed to assess which categories of terms were more cognitively accessible. A series of t tests was conducted as a priori comparisons. As Figure 1 depicts, high self-monitors were marginally faster at making me judgments for physical attributes (mean reaction times of 1,023.03 ms and 1,251.8 ms for high and low self-monitors, respectively), t(38) = 1.72, p = .09, and social roles (mean reaction times of 1,030.9 ms and 1,958.01 ms for high and low self-monitors, respectively), t(38) = 4.88, p < .001, than were low self-monitors. In contrast, low self-monitors (M = 965.80 ms) were reliably faster at making me judgments for personality attributes than were high self-monitors (M= 1,564.7 ms), t(38) = 5.84, p < .001.4

Results from the essays describing participants’ best friends revealed the pattern shown in Figure 2.

Raters used the same coding protocol from Study 1 and were shown to agree reliably on classification of responses (Kappa z = 6.13, p < .01). High self-monitors listed more physical descriptors (M = 2.20 and 1.10 for high and low self-monitors, respectively), t(1, 38) = 2.63, p = .013, and social role descriptors (M = 3.35 and .55 for high and low self-monitors, respectively), t(1, 38) = 6.45, p < .001, than low self-monitors. Low self-monitors listed more personality attributes (M = 4.95), than did high self-monitors (M = 2.90), t(38) = 2.29, p = .028.

Finally, with respect to the open-ended response measures, the results of the “Who Am I?” task replicated the findings of Study 1. As can be seen from Figure 3, high self-monitors generally mentioned more physical attributes (M = 5.85 and 1.70 for high and low self-monitors, respectively) and social roles (M = 7.15 and 1.65 for high and low self-monitors, respectively) than did low self-monitors, t(1, 38) = 6.97, p < .001 and t(1, 38) = 8.45, p < .001, respectively. However, low self-monitors (M = 15.0) mentioned more personality attributes than did high self-monitors (M = 6.90), t(1, 38) = 8.62, p < .001.

The results from Study 2 suggest high and low self-monitors differ in the categories of descriptors they use to describe themselves and others. The results also touch on the automaticity of this tendency. With the “Me/Not Me” reaction time task, participants were not asked to generate the descriptors that came to their mind when they thought about who they were. Instead, descriptors were randomly presented to them and they were simply asked to respond whether the word described them. This result suggests high and low self-monitors not only differ in the configuration of self they will use when they are “effortfully” trying to paint a picture of self for the experimenter, but also when they are making relatively “automatic” judgments as to whether a descriptor applies to their sense of self. Because participants were asked to respond as quickly and accurately as possible to the reaction time task, they were aware of the items but could spend little time processing them. As such, the fact they still responded differentially to the categories of descriptors suggests high and low self-monitors have divergent self-configurations that not only affect the picture of self they will purposely paint but also the speed with which they can process varying categories of self-relevant information.

STUDY 3

The findings of Study 2 suggest high and low self-monitors differ in the categories they use to describe themselves and others close to them. It may also be the case that the differing configurations of self they
FIGURE 1
Mean reaction time (in ms) for “Me” descriptors by category for High and Low Self-Monitors in Study 2.

FIGURE 2
Mean number of responses for best friend by category for High and Low Self-Monitors in Study 2.

FIGURE 3
Mean number of responses for self by category for High and Low Self-Monitors in Study 2.
use represent a more global underlying method of categorizing social experiences.

Is it possible, however, that the differential categories high and low self-monitors used to describe their best friends represent nothing more than a tendency to like others who are similar to us? If I like others because they are similar to me, then it is very probable I will describe them the same way I describe myself because they are truly like me. Thus, it is possible the findings of the best friend descriptions in Study 2 represent nothing more than participants accurately describing their friends rather than reflecting a selective perception process. In order to determine if the findings of Studies 1 and 2 represent a more general heuristic (or social configuration) high and low self-monitors use to organize their social worlds, Study 3 was designed to provide a more sensitive test of whether high and low self-monitors do, indeed, apply different heuristics when categorizing social experiences.

Studies 1 and 2 focused on selective retrieval of information as a function of one’s self-monitoring tendency, whereas Study 3 attempted to examine the degree to which high and low self-monitors selectively encode information. In addition, Study 3 was designed to determine if there is an interplay between self-monitoring tendencies and the encoding and selective retrieval of social information. Berscheid et al. (1976) have shown high self-monitors are more accurate in remembering information about others than low self-monitors. Additionally, Hosch and Platz (1984) have shown high self-monitors are more accurate in facial recognition. We suggest these differences in accuracy and memory depend on the heuristics used by high and low self-monitors when perceiving others. Specifically it was predicted high self-monitors would encode and retrieve more information about a stranger’s physical appearance and social relationships than low self-monitors, whereas low self-monitors were predicted to encode and retrieve more information about a stranger’s personality than high self-monitors.

Method

Participants

Participants were 30 female and 29 male undergraduate students at a small private college in the northern Midwest who participated for extra credit in their introductory psychology course. Fifty-nine participants were given the 18-item self-monitoring scale (Snyder & Gangestad, 1986). These questionnaires were scored and the 20 individuals who scored in the upper third of the distribution (SM scores > 12) and the 19 individuals who scored in the lower third of the distribution (SM scores < 8) were asked to continue participation.

Procedure and Materials

After filling out the self-monitoring scale during a mass pretest, eligible participants were told their name had been randomly selected from the student directory and asked if they would be willing to participate in a research study for extra credit points. All 39 participants agreed. Participants were tested individually and told the study involved their assessments of a new research technique involving getting-acquainted tapes. Their task, they were told, was to watch a videotape of a person describing himself, and then they would be asked questions about the tape.

The tape was of a male student given an average attractiveness rating of 6.4 (on a 7-point Likert scale) as rated by a group of 10 pilot test participants (5 men and 5 women). The standard deviation of .69 across pilot participants’ attractiveness ratings for the target suggests they were in agreement he is attractive. The male student (using a memorized script) described himself to the camera. The script was written to include 10 descriptors from each of the three categories used in Studies 1 and 2: 10 personality traits, 10 social relationships, and 10 physical characteristics. Immediately after viewing the tape, participants were asked several questions about the videotape (including quality of the picture, sound, background, etc.), asked to recall everything they could about the person from the tape, thanked for their participation, and dismissed.

Participants were not debriefed after the initial session because the experimenters planned to conduct a follow-up test that consisted of an unexpected recall task. Participants were telephoned 1 week after their original experimental session and asked to take a blank piece of paper and spend 3 min writing down everything they could remember about the person they had seen in the videotape, and all agreed to comply. They were told to mail this sheet, via campus mail, to the experimenter immediately after completing the recall task. All 39 recall sheets were received by the experimenter the following day.

Results and Discussion

As in Studies 1 and 2, analyses were conducted comparing the mean number of items recalled in each of the three descriptive categories (with a Kappa reliability statistic of $z = 5.33, p < .01$ on the two raters’ codings). Items were scored as accurate recall if they were categorized by the raters as “hits” (perfect recall) or “near-hits” (very close recall such as recall-
ing “hardworking” when the target stated he was a “hard worker”). The analysis revealed no significant differences between the means for high and low self-monitoring participants for traits, physical appearance, or social relationships, t(37) = 1.4, .10, and .09, respectively, ns. For traits, high self-monitors recalled an average of 8.55, whereas low self-monitors recalled an average of 8.58. The average number of items recalled for physical appearance descriptors and social relationship descriptors revealed a similar pattern (8.55 for high self-monitors vs. 8.58 for low self-monitors, and 8.9 for high self-monitors vs. 8.47 for low self-monitors, respectively).

The unexpected follow-up recall task 1 week later allowed us to determine if the findings were, indeed, the result of a ceiling effect. Analyses of these follow-up recall data revealed the predicted pattern (with a Kappa reliability statistic of z = 4.48, p < .01 on raters’ codings). As can be seen in Figure 4, high self-monitors recalled significantly more physical descriptors (M = 6.19 and 3.90 for high and low self-monitors, respectively), t(37) = 5.10, p < .001, and social role descriptors (M = 6.43 and 4.00 for high and low self-monitors, respectively), t(37) = 4.63, p < .001, than did low self-monitors. Low self-monitors (M = 6.75), on the other hand, recalled significantly more trait descriptors than high self-monitors (M = 4.35), t(37) = 4.60, p < .001.

The results of Study 3 cannot be used to suggest that high and low self-monitors encode information about others differentially. However, high and low self-monitors retrieve and recall differential amounts of information in each category 1 week later. This result suggests high and low self-monitors have different methods by which they categorize and extract information about their social experiences. When the salience of the information has waned (in this case after a week has passed) and the information is delegated to long-term memory, high and low self-monitors rely on the same categories they used in Studies 1 and 2 when describing themselves and their best friends.

The data from Study 3 indicate the differential use of categories to describe others is not limited to other persons who are similar to the perceiver. Participants had no idea they were going to be asked to recall information about the target person at a future date and, therefore, had no obvious reason to memorize that information. The high and low self-monitors spontaneously remembered different types of information about the target person; this strongly suggests there is an underlying heuristic they are applying to their social experiences. High self-monitors more accurately recalled physical characteristic and social role information, whereas low self-monitors more accurately recalled personality information.

There are several potential problems limiting the generalizability of Study 3. First, the distinct absence of the categorization effect on the immediate recall test is problematic. There is an obvious ceiling effect on the immediate recall test with most participants correctly recalling 90% or more of the descriptors. Given that a short script was utilized and that information about the target was presented via videotape, it is not surprising that participants, regardless of self-monitoring level, recalled virtually all of the pieces of information. Second, no data were provided that would illuminate whether the differential use of descriptor categories by high and low self-monitors is due to an encoding effect or a retrieval strategy. One way to test this difference would be to compare the items recalled perfectly by participants at the initial
session (Time 1) and during the follow-up test (Time 2).

Given the general tendency for individuals to encode information in long-term memory semantically (Sachs, 1967), one would expect poor accuracy at Time 2 if accuracy is defined as “perfect recall of items.” If, however, these descriptor categories are used by high and low self-monitors to organize and encode information about others, one would expect to find the same differential pattern for those items recalled perfectly at Time 2. Study 4 attempted to address these concerns by utilizing a more complex script for the target as well as presenting the target information on an audiotape.

STUDY 4

Study 4 employed the same basic paradigm and procedures of the previous three studies with the exception of a few minor modifications made to address concerns about Study 3. Studies 1 and 2 focused on the potential differences in how high and low self-monitors retrieve information about self and well-known others from memory. Neither of these studies, however, could address the potential differences in how high and low self-monitors encode information. Study 3, because it involved categorization and recall of information about an unknown other, provides an opportunity to test encoding differences between high and low self-monitors. No analyses, however, were performed testing whether there are differences in the perfect recall of items by high and low self-monitors across time.

Study 4 was designed to address several of these concerns. First, can a Time 1 categorical difference be found if a more complex script is used and the information is presented auditorily? Second, how many items are recalled perfectly in each category for both high and low self-monitors at both Time 1 and Time 2 testings? If high and low self-monitors show differential perfect accuracy based on these categories across time it goes a long way toward supporting the contention that self-monitoring tendencies are used by participants as an encoding strategy.

It was predicted that high self-monitors would recall more of the target’s physical and social role descriptors than the low self-monitors on both Time 1 and Time 2 testings. It was also predicted that low self-monitors would recall more of the target’s personality trait descriptors than the high self-monitors on both Time 1 and Time 2 testings. In addition, it was predicted that this same pattern of findings would hold even when successful recall is defined as “perfect recall of exact items” (e.g., if the trait was “hardworking,” recall of “hard worker” would be considered a miss). Lastly, it was predicted that low self-monitors would show the most accurate memory, recalling more items overall with perfect accuracy than the high self-monitors because they tend to focus on the more detailed items of the target (more internal and complex characteristics such as values and beliefs), whereas high self-monitors focus more on general and superficial characteristics (such as style of dress).

Methods

Participants

Participants were 20 female and 17 male undergraduate students at a small public university in the central Midwest who participated for assignment points in their course. Thirty-seven individuals took the 18-item self-monitoring scale (Snyder & Gangestad, 1986). Those participants scoring 12 or higher were included in the analyses as high self-monitors and those scoring 8 or lower were included in the analyses as low self-monitors. Using these cutoffs, 18 low self-monitors and 10 high self-monitors remained for analyses.

Procedure and Materials

Participants took the 18-item self-monitoring scale earlier in the semester in a presumably unrelated study. Then an audiotape of a target describing herself was played at the beginning of a class period halfway through the semester. During the auditory presentation the target revealed 10 each of physical, social role, and personality self-descriptors. Participants were told to listen closely to the tape because they would be asked to recall information from the presentation. Immediately after listening to the tape, all participants were given a brief distractor task (they were asked to provide demographic information about themselves, such as major, number of credit hours completed, etc., and make comments about the quality of the tape, etc.).

Following the distractor task, participants were asked to utilize a blank sheet of paper and write down everything they could recall about the target’s self-description; they were prompted to be as accurate as possible. Exactly 1 week after the Time 1 testing, the same participants were given an unexpected follow-up recall test at the beginning of the class period and were again prompted to be as accurate as possible in recalling everything they could about the target’s self-description. After the Time 2 recall test, the class was thoroughly debriefed about the study.

Results and Discussion

Once again, analyses were conducted comparing the mean number of items recalled in each of the
three descriptive categories by high and low self-monitors. A random sample of items recalled was selected by the experimenter and presented to three raters on separate occasions. Comparisons of the raters’ codings of these descriptors into categories showed 95% agreement. Given this high level of agreement, these raters were used to categorize all of the responses.

As can be seen in Figure 5, the analyses revealed the predicted pattern of effects for personality trait descriptors with low self-monitors ($M = 4.33$) recalling significantly more of these descriptors at Time 1 than high self-monitors ($M = 2.70$), $t(28) = 2.389$, $p = .024$. As predicted, Figure 6 also shows high self-monitors ($M = 5.70$) recalled significantly more physical descriptors than low self-monitors ($M = 3.05$), $t(28) = 4.785$, $p < .001$. High self-monitors ($M = 4.10$) recalled more social role descriptors than did low self-monitors ($M = 2.39$), $t(28) = 2.876$, $p = .0079$.

The same pattern of findings was demonstrated 1 week later when participants were given the unexpected follow-up recall test. As can be seen in Figure 7, low self-monitors ($M = 2.39$) recalled significantly more of these descriptors at Time 2 than did high self-monitors ($M = 1.00$), $t(1, 28) = 2.64$, $p = .013$. As predicted (see Figure 6), high self-monitors recalled significantly more physical descriptors ($M = 3.90$ and 1.44 for high and low self-monitors, respectively), $t(1, 28) = 2.463$, $p < .001$, and social role descriptors ($M = 2.20$ and 0.875 for high and low self-monitors, respectively), $t(1, 28) = 3.661$, $p = .0012$, than did low self-monitors.

In an attempt to provide preliminary evidence for determining if the recall differences illustrated by high and low self-monitors at Time 2 is indicative of an encoding effect, Time 1 and Time 2 recall data were also coded for perfect accuracy (i.e., only exact matches were counted). Comparisons were made for
high and low self-monitors on accuracy at both Time 1 and Time 2, and an accuracy score was computed based only on those items recalled perfectly at Time 1 and also at Time 2. As can be seen in Figure 7, low self-monitors showed more accurate memory at both Time 1 and Time 2 (M = 9.33 and 4.78 for Times 1 and 2, respectively) in comparison to the high self-monitors (means of 5.20 and 3.40 for Times 1 and 2, respectively). In comparing the patterns of recall, low self-monitors recalled more items across time perfectly (computed as only those items participants recalled perfectly at both Time 1 and Time 2; M = 5.23 and 3.70 for low and high self-monitors, respectively).

The results of Study 4 in conjunction with those from Study 3 begin to converge on differences between how high and low self-monitors encode and retrieve social information. In particular, the results of Study 4 suggest the differential recall of category descriptors of others by high and low self-monitors is a function of an encoding effect for low self-monitors (based on higher levels of perfect recall) and more of a retrieval strategy for high self-monitors (based on significant number of near-miss recalls but fewer perfect-recall items). These findings, in combination with the findings from Studies 1, 2, and 3, provide support for the contention that self-monitoring tendency may become a heuristic individuals use to make sense of information in their social worlds.

General Discussion

Overall, the predicted differential use of descriptive categories by high and low self-monitors was confirmed. In Study 1, and in the open-ended tasks in Study 2, high self-monitors generated more physical attributes and social roles than did low self-monitors, whereas low self-monitors generally mentioned more personality attributes than did high self-monitors. In the “Me/Not Me” reaction time task in Study 2, high self-monitors were quicker to respond to the physical attribute and social role items, whereas low self-monitors were quicker to respond to the personality attribute items.

The findings in Study 3 suggest this differential categorization of self and others is not necessarily restricted to conscious and effortful processing. Even when participants had no idea they would be asked to recall information about the target in the future, they still relied on the three categories differentially. Not only does this heuristic (or schema) seem to be relied on in generating descriptions of self and of known and liked others (retrieval), it also seems to be engaged automatically when new social information is encountered (encoding).

Study 4 findings add support for the contention that self-monitoring tendencies may serve as the catalyst for how individuals categorize, encode, and retrieve social information. As a package, these studies suggest high and low self-monitors differ in the categories of descriptors they use to categorize and recall self-information as well as information about well-known and unknown others. Low self-monitors showed a stronger tendency to encode information more accurately than high self-monitors, although when successful recall was coded to include both perfect recall and near misses, high self-monitors recalled more information than low self-monitors in all four of the studies reported.

The present results suggest the consideration of self-monitoring, specifically, and perhaps personality characteristics in general, is useful to identify differences...
different I’s weadick, osborne, penticuff, young, and norman

which general categories individuals incorporate into their self-schemas and rely on to structure and make sense of their social experiences. That is, the self-schemas of high self-monitors tend to incorporate information on physical attributes and social roles, whereas the self-schemas of low self-monitors include information on personality attributes. In turn, the different content of these self-schemas appears to energize processes involved in the “self-reference effect” (carpenter, 1988; lewicki, 1983, 1984; rogers et al., 1977) which determines what high and low self-monitors notice and recall about their social worlds. The current studies, in conjunction with previous research, suggest there is a complicated connection between an individual’s personality, his/her self-concept, and his/her perceptions of the social world. In order to truly understand why people perceive others the way they do it is imperative that we be able to isolate the factors that are involved in that decision-making process.

Further research will be necessary to determine the extent to which this differential reliance on externally versus internally based categories of information applies to the encoding of information as well. In particular it might be useful to determine if high and low self-monitors differentially encode information that is unknown to them such as foreign words. If it is truly the case that self-monitoring tendency is used by individuals as a method for organizing and interpreting social information, then that heuristic should apply whether the information is known (“I know what someone means when they say they are sensitive”) or unknown (“I don’t know what ‘Beau’ means but it sounds like a physical characteristic”). Study 3 attempted to address such an encoding question but participants’ memory for the target descriptions was so high that encoding analyses were nonsignificant. If high and low self-monitors are provided with too much target-related information for them to process will they, then, differentially encode pieces of that information? The data presented in this paper suggest this would be the case based on what high and low self-monitors consider important in structuring and making sense of their social worlds.

We do not, however, consider self-monitoring to be the only such characteristic that causes the self-referent effect. Other personality characteristics may also activate this effect and lead to predictable differences in the way individuals categorize themselves and others. But how are we to discover these other, potentially influential characteristics? We need look no further than the individual’s central (or core) self-conception. As mentioned previously, central conceptions of the self are presumed to influence information processing. What determines the dimensions that are part of the central self-conception?

The answer seems to depend on the dimension’s importance to the individual. One possible, albeit imperfect, method for determining the importance of a dimension is extremity. Though the simplest method may be to ask the person to rate how important a given dimension is to their self-definition, we would lose any ability to understand how that dimension might automatically influence further information processing. Asking about the dimension may make that dimension highly accessible, which has been shown to have an impact on subsequent behavior (e.g., downing, judd, & brauer, 1992; fazio, chen, mcDonel, & sherman, 1982). Consequently, we are unable to determine if the dimension will spontaneously be used to describe the self or to categorize self-relevant information.

If, however, an individual scores extremely high or low on a particular trait scale, it seems likely that the associated dimension (be it the extreme presence of a characteristic such as honesty or the extreme absence of it such as dishonesty) will be part of the individual’s central self-conception (for a further discussion of the role that distinctiveness plays in determining the salient dimensions of the self-concept, see mcguire, 1984; mcguire & mcguire, 1982; mcguire & padawer-singer, 1976). Thus, it is presumed, that these important trait dimensions will help shape one’s self-configurations (or self-schemas) which, in turn, will influence how one structures and views his or her social world (markus & wurf, 1987).

It is presumed, ultimately, that the present use of personality variables may be an effective means for identifying those aspects of self that are salient and accessible from memory and, thus, that exert a chronic influence on perceptions of self and others in the social world. This difference in the accessibility of information categories, then, may influence the way different individuals will interpret, perceive, and act upon their social environments.

Before concluding this paper with a broader discussion, it is necessary to make a few comments about measurement issues in self-monitoring. The purpose of this paper was not to address the psychometric strengths and weaknesses of the self-monitoring scale. For this reason, factor analyses were not done for every study, and multiple self-monitoring scales were not given to participants and then comparisons made. The current investigations are concerned with one question only: Do high and low self-monitors consistently differ in the types of information they use to process and categorize information about self and
Weadick, Osborne, Penticuff, Young, and Norman

others? As such, we use the self-monitoring construct as formulated by Snyder (1979) and Gangestad & Snyder (1985). If it is the case that questions about the psychometric soundness of the self-monitoring scale can be made (Briggs, Cheek, & Buss, 1980), such weaknesses would only serve to work against the hypotheses made in this paper.

References

