The traditional college student is becoming less the norm as an increasing number of nontraditional and distance education students attend colleges and universities. Consequently, interest in studying the college experience of nontraditional and distance education students is on the rise. In order for universities and colleges to provide a college atmosphere supportive of all students, it is important to understand what factors relate to the college experience for nontraditional and distance education students and what motivates them to learn. Previous research has shown that differences exist between traditional and nontraditional college students in their goal orientation, academic performance, level of self-concept, and stress. However, this research has not included distance education students.

Goal orientation has two categories, performance and learning. Performance-goal orientation referred to a focus on proving competence and avoiding negative evaluations. Performance-goal oriented individuals have a preference for easier tasks to ensure success, have unstable confidence in challenging situations, and feel more anxiety about evaluations. Learning-goal orientation referred to a focus on increasing knowledge and skills, actively seeking challenging tasks, and persistently and effectively problem solving when facing failure or an obstacle (Eppler & Harju, 1997).

In their study comparing goal orientation, study habits, work commitments, academic performance, and irrational beliefs among traditional and nontraditional college students, Eppler and Harju (1997) found that nontraditional students were more learning-goal oriented and were less performance-goal oriented than traditional students. Learning-goal oriented students had higher GPA’s than performance-goal oriented students and distance education students had higher GPA’s than nontraditional and traditional students. Significant relationships were found with other variables including stress, self-concept, sex, number of credits, hours employed, and hours spent studying.

Comparing Academic Motivation and Accomplishments Among Traditional, Nontraditional, and Distance Education College Students

Relationships among self-concept, stress, goal orientation (learning or performance), and grade point average (GPA) among traditional, nontraditional, and distance education students were examined. Seventy-two traditional, 40 nontraditional, and 19 distance education students completed a demographic questionnaire, the Goals Inventory (Roedel, Schraw, & Plake, 1994), the Student Life Stress Inventory (Gadzella, 1991), and the Index of Adjustment and Values (Bills, Vance, & McLean, 1951). Results showed that distance education and nontraditional students were more learning-goal oriented and less performance-goal oriented than traditional students. Learning-goal oriented students had higher GPA’s than performance-goal oriented students and distance education students had higher GPA’s than nontraditional and traditional students. Significant relationships were found with other variables including stress, self-concept, sex, number of credits, hours employed, and hours spent studying.

*Faculty supervisor
traditional students had higher learning-goal orientation, lower performance-goal orientation, and higher grade point averages (GPAs) than traditional college students.

Perceptions of stress varied among traditional and nontraditional college students in a study conducted by Dill and Henley (1998). They found that, although nontraditional and traditional college students had some similar stressors, there were also stressors unique to each group. Traditional students reported more stress with regard to peer-related events and social involvement, whereas nontraditional students dealt with more stressors related to responsibilities outside of school.

The work of Eppler and Harju (1997), Eppler et al. (2000), and Dill and Henley (1998) shows that the college experience is different for traditional and nontraditional college students and that differences in goal orientation, stress, academic performance, and self-concept exist between traditional and nontraditional college students. The previous research neglected to include distance education students. As the number of distance education students expands, it is becoming more important to understand the factors related to the college experience of these individuals. Research comparing traditional, nontraditional, and distance education students would present a variation on the previous research because distance education students do not share the same on-campus experience as traditional and nontraditional students.

The purpose of the present study was to identify the relationships among self-concept, stress, goal orientations (learning or performance), and academic performance for traditional students, nontraditional on-campus students, and distance education college students, and to determine whether those relationships differed for the three groups. We predicted that learning-goal orientation would be more positively correlated with academic performance than performance-goal orientation. We also predicted a negative correlation between level of self-concept and stress, and a positive correlation between academic performance and level of self-concept. Finally, we predicted that we would replicate the previously identified differences in goal orientation between traditional and nontraditional students. We also anticipated that the distance education students would differ more from the traditional than the nontraditional students.

Method

Participants

A total of 131 students participated. These included 72 traditional on-campus students (38 men and 34 women), 40 nontraditional on-campus students (16 men and 24 women), and 19 distance education students (6 men, 12 women, and 1 unknown) enrolled at the University of Wisconsin–Platteville. Traditional students were defined as students who attended college immediately following high school graduation. Nontraditional students were 25-years-old or older who did not immediately pursue college following high school graduation. Distance education students were students who were not on campus. These students included national and international students who were taking online classes to obtain their degrees.

Due to incomplete responses, 10 questionnaires (4 nontraditional students and 6 traditional students) were excluded from our data set. Traditional students ranged in age from 19–25 with a mean age of 21. Nontraditional students ranged in age from 25–50 with a mean age of 30. Distance education students ranged in age from 23–56 with a mean age of 40. Out of the total 131 participants, 126 were White, 3 were Asian, 1 was Hispanic, and 1 was Biracial. Traditional on-campus students were recruited from upper level courses. Nontraditional on-campus students were recruited through an e-mail request sent to 548 nontraditional students, as well as through the Nontraditional Student Club. Distance education students were also recruited through an e-mail request sent to 294 distance education students. Response rates were 7.3% for nontraditional students and 6.4% for distance education students. All students were enrolled for the fall 2005 semester and had completed at least one prior semester at the University of Wisconsin–Platteville. Participation was voluntary.

Materials

Participannts completed four questionnaires:

Demographic Inventory. A demographic inventory, constructed by the principal investigators, was used to determine the age, sex, ethnicity, year in school, overall level of stress, number of credits taken for the semester, hours spent studying, hours employed, and current grade point average (GPA) of the students. Categorical response categories were used to measure number of hours spent studying (0–4, 5–8, 9–12, and 12+) and number of hours employed (0–5, 5–10, 10–15, and 15+)

Goals Inventory. The Goals Inventory (Roedel, Schraw, & Plake, 1994) measures goal orientation (performance or learning). The Goals Inventory consists of 25 statements that assess attitudes and behaviors that reflect either a learning or performance orientation. Twelve of the 25 statements are learning factors and 5 are performance factors. Remaining statements are fillers. Students rate on a 5-point Likert scale whether the item is true of them or not. The 12
learning factors are averaged to produce a learning orientation score. The possible range of scores for the averaged learning orientation score is 1–5. The five performance factors are averaged to produce a performance orientation score and the range of scores is 1–5. In both cases, higher scores indicate a stronger goal orientation. The remaining statements are not scored. Test-retest reliability, according to Roedel, Schraw, and Plake, (1994) is .73 for the learning subscale and .76 for the performance subscale.

Student Life Stress Inventory. The Student Life Stress Inventory (Gadzella, 1991) measures stress and reactions to stressors on nine subscales, including five stress categories and four reaction categories. The stress categories are Frustration, Conflicts, Pressures, Changes, and Self-Imposed. The four reaction categories are Physiological, Emotional, Behavioral, and Cognitive Appraisal. Students respond to the 51 items using a 5-point Likert scale. Scores are obtained by summing the responses to each subscale. The range of possible scores varies depending on the subscale as the number of items for each subscale is different. The range of scores for the nine subscales are as follows: Frustration: 7–35, Conflicts: 3–15, Pressures: 4–20, Changes: 3–15, Self-Imposed: 6–30, Physiological: 14–70, Emotional: 4–20, Behavioral: 8–40, and Cognitive Appraisal: 2–10. High scores for a category indicate high stress in that category. Estimates of reliability and validity were computed for the nine stress categories but not for the individual items. Gadzella (1994) reported Cronbach alpha values that ranged from .52 (Frustrations) to .85 (Changes).

Index of Adjustment and Values. The Index of Adjustment and Values (IAV) was used to measure self-concept and was reconstructed by the principal investigators from instructions given in Bills, Vance, and McLean (1951). The IAV consists of a list of 42 traits that are rated using a 5-point Likert scale. The traits were rated on three different factors, including how often the trait is a characteristic of the participant, how they feel about each trait being a characteristic of them, and how much they wish that trait were a characteristic of them. Self-concept is assessed by first creating two scores, a self-acceptance score (SAC) and a self-ideal discrepancy score (SID). To obtain the SAC, the second rating for each trait (how they feel about each trait being a characteristic of them) is summed. The SID scores are obtained from the sum of the differences of the first and third ratings for each trait (sum of the differences between how often the trait is a characteristic of them and how much they wish that trait was a characteristic of them). The self-ideal discrepancy score is then subtracted from the self-acceptance score to obtain a total self-concept. Higher self-acceptance scores and lower self-ideal scores indicated a higher self-concept.

Procedure

Questionnaires were administered to traditional on-campus students in upper-level classes with the consent of the instructor during their designated class time. These students read an informed consent form that explained the purpose of the study. They were then given the four questionnaires to complete in the following order: Demographic Inventory, Goals Inventory, Student-Life Stress Inventory, and Index of Adjustment and Values. At the end of each session, participants were debriefed and invited to attend a research symposium at which the results of the study would be shared.

Nontraditional on-campus and distance education students who volunteered to participate in response to an email request received a packet in the mail that included an instructional letter (informing
participants of the purpose of the study and how to complete the questionnaires), a participant consent form, four questionnaires, a debriefing statement, and a return envelope. The nontraditional on-campus students were also given the option of taking the questionnaires at a Nontraditional Student Club meeting following the same procedure used with the traditional on-campus students.

Results

A multivariate analysis of variance (MANOVA) was used to analyze the differences in goal orientation (performance or learning) of traditional, nontraditional, and distance education students. The main effect for classification was significant, $F(4, 256) = 5.52, p < .01, \eta^2 = .08$. Univariate significance was found for learning-goal orientation, $F(2, 128) = 5.43, p = .01, \eta^2 = .06$, with distance education and nontraditional students being more learning-goal oriented than traditional students (see Table 1). Post hoc Scheffe tests indicated that distance education and nontraditional students did not differ significantly, but traditional students differed significantly from distance education and nontraditional students. Significance was also found for performance-goal orientation, $F(2, 128) = 4.03, p = .02, \eta^2 = .06$, with distance education students being less performance-goal oriented than nontraditional students and traditional students (see Table 1). Scheffe tests indicated that distance education students and traditional students differed significantly on performance-goal orientation though distance education and nontraditional students did not. Overall, all three groups of students were more learning-goal oriented ($M = 3.53$, $SD = .45$) than performance-goal oriented ($M = 2.50$, $SD = .67$).

A second MANOVA was used to analyze differences of traditional, nontraditional, and distance education students in GPA, overall stress, the nine subscales of stress, and self-concept. This MANOVA also analyzed the differences of men and women on these same variables plus goal orientation. Multivariately, the interaction of sex of participant and classification was not significant, $F(28, 208) = 1.03, p = .22, \eta^2 = .01$. Also, no differences were found for the classification groups or sex of participant related to self-concept.

Multivariately, a significant main effect was found for classification, $F(14, 103) = 1.69, p = .02, \eta^2 = .19$. Univariately, significance was found for GPA, $F(2, 116) = 9.21, p < .01, \eta^2 = .14$, with distance education students having higher GPA’s than nontraditional and traditional students (see Table 1). Post hoc Scheffe tests found that distance education students did not differ significantly from nontraditional students, but did differ significantly from traditional students on GPA.

Further, nontraditional students were found to differ significantly from traditional students on GPA. Significance was also found for two of the stress subscales, Changes, $F(2, 116) = 3.07, p = .05, \eta^2 = .05$, and Cognitive Appraisal, $F(2, 116) = 4.41, p = .01, \eta^2 = .07$. Stress related to Changes referred to any kind of change or adjustment in one’s life that was unpleasant or disrupted the individual’s life or life goals. It also referred to experiencing multiple changes at one time. Stress related to Cognitive Appraisal referred to evaluating the intensity of a stressful situation and how effectively it was handled. It appears that distance education students felt more stress from Changes than nontraditional and traditional students (see Table 2); however, post hoc Scheffe tests did not find any significant differences among the three classification groups.

Nontraditional students and distance education students reported more stress related to Cognitive Appraisal than traditional college students (see Table 2), and post hoc Scheffe comparisons indicated that nontraditional and traditional students significantly differ from one another. However, post hoc comparisons did not find the difference between distance education students and traditional students to be significant. The classification groups did not significantly differ on their overall level of stress.

A significant multivariate main effect was also found for sex of participant, $F(14, 103) = 1.86, p = .04, \eta^2 = .20$. The means and standard deviations are displayed in Table 3. Significant gender differences were found for performance-goal orientation, $F(1, 116) = 4.57, p = .04, \eta^2 = .04$, with women being more performance-goal oriented than men. Significance was found for GPA, $F(1, 116) = 7.90, p = .01, \eta^2 = .06$, with women having higher GPA’s than men. Men and

Table 2

<table>
<thead>
<tr>
<th>Classification</th>
<th>Changes M</th>
<th>Changes SD</th>
<th>Cognitive appraisal M</th>
<th>Cognitive appraisal SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>7.38</td>
<td>2.27</td>
<td>5.53<sup>a</sup></td>
<td>1.98</td>
</tr>
<tr>
<td>Nontraditional</td>
<td>8.09</td>
<td>2.47</td>
<td>6.65</td>
<td>2.10</td>
</tr>
<tr>
<td>Distance Education</td>
<td>8.88</td>
<td>2.25</td>
<td>6.63</td>
<td>1.54</td>
</tr>
</tbody>
</table>

^a Traditional differs significantly from nontraditional, $p < .05$.

Winter 2007 □ Psi Chi Journal of Undergraduate Research

Copyright 2007 by Psi Chi, The National Honor Society in Psychology (Vol. 12, No. 4, 154-161 / ISSN 1089-4136).
women also significantly differed on Physiological Stress, $F(1, 116) = 6.36, p = .01, \eta^2 = .05$, with women reporting higher levels of Physiological Stress than men. Physiological Stress referred to physical reactions to stress such as headaches, fatigue, sweating, hives, and weight gain/loss.

To better analyze the variables that significantly related to GPA, a stepwise regression was computed with goal orientation, overall stress, the nine stress subscales, self-concept, and sex of participant as predictors and GPA as the dependent variable. Learning-goal orientation entered in the first step of the regression, $R^2 = .05, F(1, 120) = 6.75, p = .01$. Therefore, learning-goal orientation explained the greatest amount of variance in GPA, $\beta = .23, t(120) = 2.60, p = .01$, with students who were more learning-goal oriented reporting higher GPA’s. The fourth and final step of the regression showed that sex of participant as well as two stress subscales, Conflicts and Self-imposed, were also significant predictors of GPA, $R^2 = .18, F(4, 117) = 6.44, p < .01$. The stress subscale of Conflicts referred to experiencing stress that is the result of choosing among two or more alternatives that were either both desirable, both undesirable, or a combination of desirable and undesirable. Self-imposed stress referred to experiencing stress as a result of being competitive, procrastinating, or worrying. Performance-goal orientation was left out of the equation and did not significantly relate to GPA. A summary of the stepwise regression is presented in Table 4.

Bivariate correlations of academic performance (GPA), goal orientation, overall stress, nine subscales of stress, self-concept, and sex were conducted. The correlation between total self-concept and GPA was not found to be significant, $r(121) = .13, p = .14$. Also, the correlation between overall stress and level of self-concept was not found to be significant, $r(128) = -.14, p = .12$. However, one of the nine subscales of stress, Emotional Stress, was found to correlate significantly with level of self-concept, $r(128) = -.24, p = .01$. Students with lower self-concepts reported higher Emotional Stress. Self-concept and learning-goal orientation were found to correlate significantly, $r(128) = .48, p < .01$, with students who have higher self-concepts focusing more on increasing their knowledge and skills.

Finally, the number of credits for the current semester, hours spent studying, and hours employed were collected categorically, χ^2 tests were calculated. The χ^2 test for hours spent studying was not significant, $p = .11$. However, a pattern seemed to exist in that over half of the traditional students reported studying less than 8 hours a week, whereas over half of the nontraditional students reported studying 9 hours or more a week. The distance education students were equally distributed with some studying under 4 hours, others between 4 and 12, and the rest 12 or more. The χ^2 test for hours employed revealed significant differences among the three classification groups, $\chi^2 (6, N = 131) = 25.68, p < .01$. All of the distance education students were employed over 15 hours a week, whereas the nontraditional and traditional students were split with half employed less than 5 hours and the other half employed over 15 hours a week.

Discussion

The present data support the hypothesis that differences would be found between traditional, nontraditional, and distance education students in goal orientation (performance or learning) and academic performance. Consistent with previous findings by...

TABLE 3

<table>
<thead>
<tr>
<th>Sex</th>
<th>Performance-goal orientation</th>
<th>GPA</th>
<th>Physiological stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>Men</td>
<td>2.41</td>
<td>.70</td>
<td>3.12</td>
</tr>
<tr>
<td>Women</td>
<td>2.66</td>
<td>.62</td>
<td>3.35</td>
</tr>
</tbody>
</table>
Eppler and Harju (1997), nontraditional students were more learning-goal oriented than traditional college students; the same was true for distance education students. Traditional students were found to be somewhat more performance-goal oriented than the nontraditional students, consistent with the findings of Eppler and Harju (1997), and significantly more performance-goal oriented than the distance education students. Together these findings suggest that distance education and nontraditional students focus more on increasing their knowledge and skills, seeking out challenging tasks, and persistently and effectively problem solving to overcome obstacles and avoid failure. All three classification groups identified more with learning-goal orientation than performance-goal orientation; however, traditional students scored the highest of the three groups on performance-goal orientation. This suggests that traditional students focus more on avoiding negative evaluations and proving their competence by selecting easier tasks rather than challenging tasks to enhance the likelihood of success.

Consistent with the research by Eppler et al. (2000) the current study found that traditional, nontraditional, and distance education students differ on academic performance in that distance education and nontraditional students have higher GPA’s than traditional students. Distance education students also have higher GPA’s than on-campus nontraditional students. Also, nontraditional students spent the most time studying, followed closely by traditional students, which supports the finding by Eppler and Harju (1997) that learning-goal oriented students spend the most time studying. The results of our study continue to be consistent with the research by Eppler and Harju (1997) as it was found that learning-goal oriented students had higher GPA’s than performance-goal oriented students. This finding also supports the hypothesis that learning-goal orientation would be more positively correlated with academic performance than performance-goal orientation.

When comparing these groups on academic performance, it is important to note the differences that were found among traditional, nontraditional, and distance education students in the average number of credits that the three groups carried as well as the average number of hours spent employed. Both of these factors could influence the differences found on academic performance. Distance education students took an average of 6 credits, whereas nontraditional students took 12 and traditional students took 15. However, all of the distance education students were employed over 15 hours a week, whereas only half of the nontraditional and traditional students reported working over 15 hours a week. Similar patterns in hours employed for nontraditional and traditional students are shown with half of each group employed less than 5 hours and the other half employed over 15 hours a week. These results differ from those found by Eppler and Harju (1997). Eppler and Harju (1997) found that nontraditional students spent more hours employed than traditional students. However, our results suggest that distance education students worked more hours than nontraditional and traditional students.

Another interesting finding is the lack of relationship between academic performance and performance-goal orientation. Academic performance and performance-goal orientation are not found to correlate significantly, which is surprising as performance-goal oriented students are more concerned with being successful and performing competently (Eppler & Harju, 1997). A higher GPA would seem to symbolize success and adequate understanding of materials and would therefore be something for which performance-goal oriented students would strive. However, it is known from previous research that learning-goal oriented students have the most concern for acquiring knowledge and skills, which results in better grades (Eppler & Harju, 1997).

TABLE 4

<table>
<thead>
<tr>
<th>Variable</th>
<th>(B)</th>
<th>(SE) (B)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning-Goal-Orientation</td>
<td>.02</td>
<td>.01</td>
<td>.23</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning-Goal-Orientation</td>
<td>.02</td>
<td>.01</td>
<td>.22</td>
</tr>
<tr>
<td>Sex</td>
<td>.23</td>
<td>.09</td>
<td>.22</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning-Goal-Orientation</td>
<td>.02</td>
<td>.01</td>
<td>.16</td>
</tr>
<tr>
<td>Sex</td>
<td>.25</td>
<td>.09</td>
<td>.24</td>
</tr>
<tr>
<td>Conflicts</td>
<td>.06</td>
<td>.03</td>
<td>.20</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning-Goal-Orientation</td>
<td>.02</td>
<td>.01</td>
<td>.17</td>
</tr>
<tr>
<td>Sex</td>
<td>.26</td>
<td>.09</td>
<td>.25</td>
</tr>
<tr>
<td>Conflicts</td>
<td>.08</td>
<td>.03</td>
<td>.23</td>
</tr>
<tr>
<td>Self-Imposed</td>
<td>-.03</td>
<td>.01</td>
<td>-.22</td>
</tr>
</tbody>
</table>

Winter 2007 · PSI CHI JOURNAL OF UNDERGRADUATE RESEARCH

Copyright 2007 by Psi Chi, The National Honor Society in Psychology (Vol. 12, No. 4, 154-161 / ISSN 1089-4136).
Although we did find significant differences in stress for the three groups, they are inconsistent with the stressors noted in previous research by Dill and Henley (1998). Dill and Henley (1998) found that nontraditional students experienced more stress from events outside of school, and traditional students felt more stress from social and peer involvements. We found that nontraditional and distance education students felt more stress related to Cognitive Appraisal than traditional students. Cognitive Appraisal involves evaluating one’s perceptions and responses to stressful situations. This suggests that the more learning-goal oriented students experience more stress related to Cognitive Appraisal. This may be a result of learning-goal oriented students being more concerned with how effective their problem solving abilities are as well as their level of skill in handling challenging tasks. Distance education students experienced more stress from Changes than nontraditional and traditional students. No other stress differences were found to be significant among the three groups.

The differences in stressors found in this study may be a result of using the Student Life Stress Inventory rather than the Adolescent Perceived Events Scale, which Dill and Henley (1998) used. The Adolescent Perceived Events Scale is meant to be used with traditional college students and therefore was believed to be an inadequate instrument in measuring stress for nontraditional and distance education students. Therefore, the Student Life Stress Inventory was used as it has been used with college undergraduate students ranging in age from 17–54 (Gadzella, 1994). The findings of our study support the hypothesis that traditional, nontraditional, and distance education students differ in stress; however, it is minimally supported considering that there were 10 different stress factors (overall stress and 9 stress subscales) on which the students were compared and the three groups only differed significantly on 2 stress factors.

The hypothesis that traditional, nontraditional, and distance education students will differ on level of self-concept is not supported. Further, the finding by Anolik (1980) that academic performance highly correlated with level of self-concept is not replicated; therefore, our hypothesis that academic performance and level of self-concept will be positively correlated is not supported. However, there is minimal support for the hypothesis that level of self-concept correlates negatively with stress, because self-concept did correlate with the Emotional subscale of stress. These results indicate that students who have lower self-concepts experience more emotion when they are in stressful situations.

In addition to the differences found among traditional, nontraditional and distance education students, sex differences are found as well. Women are found to be more performance-goal oriented than men and to have higher GPA’s than men. It is interesting to note that this relationship is contrary to the relationship of academic performance and goal orientation found with the classification groups. Future researchers may want to explore this relationship further, because this finding may suggest that a differential relationship exists between academic performance and performance-goal orientation for men and women. A final difference found between men and women is on the stress subscale of Physiological Stress. Women are found to experience higher levels of Physiological Stress than men. This suggests that women and men respond to stress differently.

A few limitations of this study should be considered. There is a low response rate from the nontraditional and distance education students, which could potentially limit the generalizability of our findings as a result of sampling bias. The nontraditional and distance education students who are willing to take the time to respond to our survey may represent a more serious and dedicated group of students than those who did not respond. However, the results of our study are consistent with previous findings on traditional and nontraditional students; this suggests that the nontraditional sample, though small, is fairly representative of nontraditional students in general. Methodologically, our contact with the nontraditional and distance education students are restricted to one e-mail contact. This limited communication may have lowered our response rate. A final limitation of this study may be that both part-time and full-time nontraditional and distance education students are included in this study. The results of this study might differ if part-time students are excluded. It is possible that these students experience less stress as a result of taking fewer classes and not carrying a full credit load. This can also have alter the results on GPA. It may be easier to obtain a high GPA with fewer credits. However, it may be difficult to obtain a sample of distance education students that includes only full-time students. Future research should also attempt to include a more diverse participant pool because this sample consisted primarily of Caucasians.

Our results suggest that distance education and nontraditional students are very similar and would benefit from a different learning environment than traditional students. Distance education and nontraditional students seem to embrace challenges more than traditional students and are less anxious about failure. Because nontraditional students and traditional
students are typically interspersed in classrooms, the challenge of providing a supportive environment for all students is even greater. An educational environment conducive to a learning-goal orientation may be stressful to traditional students, but it might also be beneficial. We found traditional students to be stronger on learning-goal orientation than performance-goal orientation and our results indicate that learning-goal orientation is more strongly related to academic accomplishments. Thus the benefits of educational techniques designed to enhance learning goals may outweigh any experienced discomforts. Given the rate of increase in the representation of distance education and nontraditional students at universities, such changes may be inevitable.

References

