According to the latest text revision of the *Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition* (DSM-IV-TR; American Psychiatric Association [APA], 2000), Attention Deficit Hyperactivity Disorder (ADHD) is a childhood-onset behavioral disorder with symptoms divided into two major categories—Inattention and Hyperactivity-Impulsivity. Although symptoms lessen with age for some children, roughly 10-60% of children with ADHD continue to display symptoms of ADHD in adulthood (Root & Resnick, 2003). Root and Resnick suggest that those with ADHD might exhibit different symptoms of the disorder as they age, but they will continue to have the disorder. Recent research has focused on the manifestations of ADHD in adults. Kass, Wallace, and Vodanovich (2003) found associations between symptoms of ADHD and both boredom proneness and sleep disorders in college students, and they suggested that future research should examine whether the findings apply to individuals diagnosed with ADHD. Research with children has suggested that problems stemming from symptom-related behaviors of ADHD can affect self-esteem and academic achievement as well (Edom, Lichtenstein, Granlund, & Larsson, 2006; Weiss & Hechtman, 1993). The current study extends research by Kass et al. and examines boredom proneness, sleep disturbances, self-esteem, and academic achievement in college students exhibiting symptoms of ADHD and in individuals diagnosed with the disorder.

Kass et al. (2003) studied possible factors related to adult ADHD. Children diagnosed with ADHD often exhibit sleeping problems (Golan, Shahar, Ravid, & Pillar, 2004; Stein, 1999) and symptoms of inattention and boredom, including difficulty concentrating on the task at hand (APA, 2000). Kass and colleagues hypothesized that, in the adult population, boredom proneness and sleep disturbances would be indicative factors for symptoms of ADHD, as assessed by Johnson and Lyonfield's Adult Behavior Checklist (ABC; as cited in Smith & Johnson, 1998). Kass et al. also used the Boredom Proneness Scale (BPS; Farmer & Sundberg, 1986), the Athens Insomnia Scale (AIS; Soldatos, Dikeos, & Paparrigopoulos, 2000), and the Epworth Sleepiness Scale (ESS; Johns, 1992) in the study. The results of the study by Kass and colleagues concluded that boredom proneness and sleep disturbances were significant predictors of higher scores on the Adult Behavior Checklist, suggesting that both of these factors are significantly associated with symptoms of adult ADHD.

Research has recently expanded to address the existing association between symptoms of ADHD and low self-esteem in children and adults. A longitudinal twin study by Edom and colleagues (2006) examined the relationship between ADHD-symptom scores at the ages of 8 and 13 years old with self-esteem scores.
Self-esteem scores were assessed using the “I Think I Am” questionnaire, a self-report scale based on other well-known self-esteem, self-concept, and self-image inventories. As expected, the researchers found that children with higher ADHD scores at both 8 and 13 years of age had statistically significant lower self-esteem scores than their co-twin controls (Edburn et al.). Ramsay and Rostain (2005) identified low self-esteem in adults with ADHD as well, noting that the stress resulting from symptom-related behaviors and frequent failure often results in low self-esteem in the adult ADHD population.

In the typical population, levels of self-esteem play a key role in influencing academic achievement among young students. A study conducted by Wiggins and Schatz (1994) tested the potential impact self-esteem has on a student’s academic achievement. The researchers examined self-esteem, grade point average, and standardized test scores for fifth and sixth graders and found that self-esteem scores were more predictive of academic achievement (GPA) than scores on standardized tests. Rosenberg (1979) also noted that students with higher grades reported higher global self-esteem. In the present study, the researchers sought to establish a similar relationship between self-esteem and academic achievement in college students exhibiting symptoms of ADHD.

High academic achievement is often difficult for individuals exhibiting symptoms of ADHD. Barkley (1998) noted that academic achievement is a frequent problem area for children with ADHD. According to Weiss and Hechtman (1993), difficulties with hyperactivity, impulsivity, and inattention that are core symptoms of the disorder negatively affect academic achievement. Specific problems resulting from symptoms of the disorder include cognitive and impulsive disorganization, poor task performance, and lack of motivation. Children with ADHD often experience learning deficits stemming from failure to pay attention to previously taught lessons (Weiss & Hechtman).

While academic problems associated with ADHD have been frequently studied among children and adolescents (Barkley, 1998; Weiss & Hechtman, 1993), research is sparse concerning academic achievement among college students. Recently, Frazier, Youngstrom, Glutting, and Watkins (2007) published an article on two interrelated studies examining achievement in individuals with ADHD. The first study was a meta-analysis of literature published since 1990 on the topic. The findings revealed decreasing impairment from symptoms with age, with children being more significantly impaired in achievement than adolescents, and adolescents being more significantly impaired in achievement than adults. The second study examined achievement levels for college-level students with ADHD and concluded that symptoms of ADHD have a negative effect on scholastic performance at the college level (Frazier et al.). The present study seeks to address issues associated with academic achievement in college students exhibiting symptoms of ADHD.

The current study is a necessary expansion of the work done by Kass et al. (2003) to examine factors associated with academic achievement in college students exhibiting symptoms of ADHD. It examines boredom proneness, as assessed by the Boredom Proneness Scale, and sleep disturbance, as assessed by the Athens Insomnia Scale. Self-esteem is based on the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965; 1989). In their discussion section, Kass et al. also note the importance of including individuals diagnosed with ADHD in future research. To address this issue, the present study includes a “yes” or “no” response question asking participants if they have ever been diagnosed with the disorder. Symptoms of ADHD are assessed using the Adult Behavior Checklist. Similar to the work by Frazier et al. (2007), academic achievement is based on cumulative grade point averages (GPAs) and scores on the ACT.

The researchers hypothesized that scores on the BPS, AIS, and RSES would be correlated with one another. Higher scores on the BPS and AIS and lower scores on the RSES would be associated with more symptoms of ADHD, as indicated on the ABC, and would additionally be associated with lower GPAs and lower scores on the ACT. The study also examined any potential differences existing between those diagnosed with ADHD and those who had never received a diagnosis.

Method

Participants
One hundred sixty-six college students from a mid-sized university in the midwestern part of the United States agreed to participate in the study. The participants were gathered from a convenience sample of students enrolled in various general studies courses. Participants consisted of 114 women and 51 men, with a mean age of 21 years old ($SD = 4.95$) and a mode of 19 years old. Participants were predominantly White ($n = 137$), with the remainder representing a variety of ethnicities: African American ($n = 15$), Hispanic ($n = 5$), Asian ($n = 5$), and Other ($n = 4$). Of the participants, 68 were at the freshman level, 60 were sophomores, 25 were juniors, and 10 were seniors. The remaining 3 participants were categorized as “Other.” The mean reported GPA was 3.2 ($SD = .54$). For the ACT, the mean score was 22.69 ($SD = 3.57$) and the mode was 22.

Of the 166 participants, 3 men and 9 women
indicated having been diagnosed with ADHD. All participants who indicated being diagnosed with ADHD were White. The mean age of the participants with a diagnosis was 22.83 years old ($SD = 9.36$) and the mode was 19 years old. In the ADHD subgroup, 5 participants were at the freshman level, 6 were sophomores, and 1 was a junior. The mean reported GPA was 2.97 ($SD = .59$). For the ACT, the mean score was 21.67 ($SD = 2.74$) and the mode was 20.

Materials

The items on the questionnaire addressed demographic information regarding gender, age, ethnicity, and academic level (e.g., freshman, sophomore, junior, senior), as well as cumulative undergraduate GPA. Participants in their first academic semester were asked to check the provided box and leave the space for GPA blank. Because these first semester freshman did not yet have a cumulative GPA, an additional question included composite scores on the ACT. The demographic questionnaire was followed by the measures assessing boredom proneness, insomnia, and self-esteem, respectively, as described below. The measure assessing ADHD was listed last to minimize participants’ awareness of the ADHD component until the end of the questionnaire. An additional question was included at the end of the questionnaire with a “yes/no” answer format asking participants if they had ever been diagnosed with Attention Deficit Hyperactivity Disorder. For each of the measures described below, a mean substitution procedure was used if a respondent failed to answer any question on a subscale. This procedure, which substitutes the mean of the remaining items of the subscale for the missing item, allowed data to be included for the four participants with missing data on any multi-item scale.

Boredom Proneness Scale. Boredom proneness was assessed using the Boredom Proneness Scale (BPS; Farmer & Sundberg, 1986), a 28-item self-report questionnaire. As suggested by Kass et al. (2005), the scale was converted to a 7-point Likert scale, ranging from 1 (highly disagree) to 7 (highly agree). Negatively worded items were reverse coded, and a total score was derived by summing the ratings on the 28 items. Higher scores indicate greater boredom proneness. The 7-point Likert scale format of the BPS has internal consistency ranging from .83 to .85, respectively (Kass et al.; Vodanovich & Kass, 1990), and test-retest reliability of .83 (Farmer & Sundberg, 1986). The internal consistency (Cronbach’s alpha) for the BPS in the current study was .79. The scale has shown strong relationships with self-ratings of boredom, providing preliminary evidence for the validity of the measure (Farmer & Sundberg).

Athens Insomnia Scale. Insomnia was measured using the Athens Insomnia Scale (AIS; Soldatos et al., 2000), an 8-item questionnaire measuring sleep disturbances on a scale ranging from 0 (no problem at all) to 3 (very serious problem). Ratings on each of the eight items on the AIS are summed to produce an overall sleep disturbance score, which ranges from 0 to 24. Higher scores indicate greater sleep impairment. Soldatos et al. reported that the AIS has an internal consistency of .87 to .89, with test-retest reliability of .88 to .89. In this study, the internal consistency (Cronbach’s alpha) for the AIS was .85. Soldatos et al. reported that the AIS has an external validity of .90.

Rosenberg Self-Esteem Scale. Self-esteem was measured using the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965, 1989), a 10-item self-report questionnaire measuring feelings of self-worth and self-esteem. Items on the scale are rated on a 4-point scale, ranging from 1 (strongly agree) to 4 (strongly disagree). Reverse coding was used and a summary score (ranging from 10 to 40) was derived so that higher scores indicate greater self-esteem. Rosenberg (1965, 1979) reported test-retest reliability of the scale as .92, and later studies (Blascovich & Tomaka, 1991; Schmitt & Allik, 2005) have also found test-retest reliability to be high, ranging from .81 to .88. In this study, the internal consistency (Cronbach’s alpha) for the RSES was .89. The scale also has demonstrated adequate convergent and discriminant validity (Blascovich & Tomaka; Byrne, 1996; Robinson & Shaver, 1973).

Adult Behavior Checklist. Symptoms of ADHD were assessed using Johnson and Lyonfield’s Adult Behavior Checklist (ABC; as cited in Smith & Johnson, 1998), an 18-item self-report questionnaire. The questionnaire is a screening instrument that measures symptoms indicating potential diagnosis of ADHD. The questionnaire is divided into the two subscales of Inattentiveness and Hyperactivity, each consisting of 9 questions. The questions are paraphrased from the diagnostic criteria listed in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; APA, 1994). Items on the scale are rated on a 4-point scale ranging from 1 (never or rarely) to 4 (very often). A total score is derived by summing the ratings on all items. In addition, ratings on the first nine questions are summed to produce an Inattention Subscale score. The remaining items are summed to produce a Hyperactivity-Impulsivity Subscale score. Higher scores indicate greater numbers of ADHD symptoms. The ABC has an internal consistency ranging from .74 to .78 (Smith & Johnson, 1998). In the current study, the internal consistency (Cronbach’s alpha) for the total ABC scale was .88, for the Inattention Subscale was .85, and for the Hyperactivity-Impulsivity Subscale was .81. Smith and Johnson (1998) provide evidence for the factor structure of the DSM-IV criteria assessed by the ABC, and preliminary validity studies (as cited...
in Smith and Johnson, 1998) suggest that high scores are associated with difficulties in maintaining attention and in inhibiting responses.

Procedure

Approval was obtained from the College Committee for Research Involving Human Subjects prior to conducting the study. On the approved questionnaire format, the ABC was listed last to minimize participants’ awareness of the ADHD component until the debriefing. For this reason, the question (using a "yes/no" answer format) asking participants if they had ever been diagnosed with ADHD was placed at the end of the questionnaire. Various professors teaching general studies courses across the campus were contacted to gain permission to administer the questionnaires in their classes. After consent was obtained from the professors to enter their classes, dates were arranged to distribute the questionnaires. The surveys were distributed in a 2-week period early in the spring semester to seven regular-session classes across the campus. Before the survey was administered, individuals were informed that the research was concerned with factors associated with academic achievement. Participation was voluntary and formal consent assuring confidentiality and anonymity was obtained through written forms requiring participants’ signatures. Participants were assured that they could withdraw from participation at any point during the study. Participants were asked to remain quiet until all questionnaire packets were completed and returned to the administrator. After the consent forms were collected, the manila envelopes containing the questionnaires were distributed. A debriefing form was given to participants upon completion of the questionnaire.

Results

Table 1 presents the correlations of the measures for the entire sample of participants. The results of the two-tailed correlation analyses of the whole sample of participants indicated significant correlations among the BPS, AIS, and RSES with the significance level of \(p < .01 \). As can be seen in Table 1, self-esteem was negatively correlated with both boredom proneness and insomnia symptoms, and boredom proneness was positively correlated with insomnia symptoms.

Significant correlations with the two-tailed significance level at \(p < .01 \) were identified for the BPS, AIS, and RSES with the ABC. ADHD symptoms had a significant positive correlation with both boredom proneness and insomnia symptoms, but symptoms of ADHD were negatively correlated with self-esteem. Similar patterns of relationships were present for the Hyperactivity-Impulsivity subscale of the ABC, boredom proneness, insomnia symptoms, and self-esteem.

As demonstrated in Table 1, boredom proneness and symptoms of ADHD were negatively correlated with GPA. However, GPA was not significantly associated with insomnia symptoms or with self-esteem. GPA had a weak negative correlation with the Inattention subscale of the ABC, but no significant correlation existed between GPA and the Hyperactivity-Impulsivity subscale of the ABC. When a stepwise multiple regression analysis was used, the only variable that predicted GPA was boredom proneness, \(R^2 = .05, \beta = -.23, t(150) = -2.82, p < .01 \). None of the variables predicted ACT scores. No correlation existed between ACT scores and scores on the BPS, AIS, RSES, or ABC. Overall GPA had a significant positive association with ACT scores.

Participants were divided into two groups based on their responses to the item concerning whether they had ever received a diagnosis of ADHD (with a rating of 1 assigned to a “yes” answer and a rating of 2 assigned to a “no” answer). A significant correlation with the two-tailed significance level at \(p < .01 \) was identified between the ABC and a reported diagnosis of ADHD, \(r = -.307 \). Eleven of the 151 participants who had an established college GPA indicated that they had received the diagnoses of ADHD. However, there were no significant differences in GPA between those with an ADHD diagnosis and those without, \(t(113.32) = -1.41, p > .05 \). Table 2 contains the mean scores for ADHD symptoms (as assessed by the ABC), boredom proneness, insomnia, self-esteem, GPA, and ACT for college students with and without a self-reported diagnosis of ADHD.

Discussion

The authors were interested in the relationships that boredom proneness, sleep disturbances, self-esteem, and ADHD have with academic achievement. The findings of the study indicate correlations supporting the first and second hypotheses. The initial hypothesis predicted that scores on the BPS, AIS, and RSES would be significantly correlated. The second hypothesis proposed that higher scores on the BPS and AIS and lower scores on the RSES would be associated with more symptoms of ADHD as indicated on the ABC. As Kass et al. (2003) had found, boredom proneness and insomnia symptoms were positively correlated. Additionally, boredom proneness and insomnia symptoms were positively correlated with ADHD symptoms as assessed by the ABC. Boredom proneness, insomnia symptoms, and ADHD symptoms (Overall ABC, Inattent-
TABLE 1
Correlations Among ADHD Symptoms, Self-Esteem, Insomnia, Boredom Proneness, Grade Point Average, ACT Score, and Age

<table>
<thead>
<tr>
<th>Measure</th>
<th>IABC</th>
<th>HABC</th>
<th>RSES</th>
<th>AIS</th>
<th>BPS</th>
<th>GPA</th>
<th>ACT</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD symptoms (ABC)</td>
<td>.88†</td>
<td>.87†</td>
<td>-.42†</td>
<td>.40†</td>
<td>.49†</td>
<td>-.18*</td>
<td>.02</td>
<td>.08</td>
</tr>
<tr>
<td>Inattentive symptoms (IABC)</td>
<td>.52†</td>
<td>.52†</td>
<td>.38†</td>
<td>.54†</td>
<td>-.19*</td>
<td>.03</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>Hyperactive symptoms (HABC)</td>
<td>-.20†</td>
<td>.33†</td>
<td>.30†</td>
<td>-.13</td>
<td>.00</td>
<td>-.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-esteem (RSES)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insomnia (AIS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.34†</td>
<td>-.50†</td>
<td>.00</td>
<td>-.08</td>
</tr>
<tr>
<td>Boredom proneness (BPS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.23†</td>
<td>-.09</td>
</tr>
<tr>
<td>Grade point average (GPA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.39†</td>
</tr>
<tr>
<td>ACT score (ACT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.09</td>
</tr>
</tbody>
</table>

*p < .05. **p < .01 (two-tailed tests).

TABLE 2
Mean Scores for College Students With and Without an ADHD Diagnosis

<table>
<thead>
<tr>
<th>Measures</th>
<th>ADHD Diagnosis</th>
<th>No ADHD Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD symptoms (ABC)</td>
<td>M 43.92</td>
<td>M 34.34</td>
</tr>
<tr>
<td></td>
<td>SD 11.65</td>
<td>SD 7.41</td>
</tr>
<tr>
<td>Boredom Proneness (BPS)</td>
<td>M 102.33</td>
<td>M 94.32</td>
</tr>
<tr>
<td></td>
<td>SD 17.75</td>
<td>SD 15.96</td>
</tr>
<tr>
<td>Insomnia (AIS)</td>
<td>M 8.00</td>
<td>M 7.76</td>
</tr>
<tr>
<td></td>
<td>SD 3.22</td>
<td>SD 4.62</td>
</tr>
<tr>
<td>Self-Esteem (RSES)</td>
<td>M 29.00</td>
<td>M 32.29</td>
</tr>
<tr>
<td></td>
<td>SD 5.41</td>
<td>SD 4.91</td>
</tr>
<tr>
<td>GPA</td>
<td>M 2.97</td>
<td>M 3.23</td>
</tr>
<tr>
<td></td>
<td>SD .59</td>
<td>SD .53</td>
</tr>
<tr>
<td>ACT</td>
<td>M 21.67</td>
<td>M 22.79</td>
</tr>
<tr>
<td></td>
<td>SD 2.74</td>
<td>SD 3.60</td>
</tr>
</tbody>
</table>

Note. For the ABC, BPS, AIS, and RSES, *n* = 12 for those with an ADHD diagnosis and *n* = 153 for those without an ADHD diagnosis. For students with an established GPA, *n* = 11 for those with an ADHD diagnosis and *n* = 140 for those without an ADHD diagnosis. For those who reported an ACT score, *n* = 9 for those with an ADHD diagnosis and *n* = 138 for those without an ADHD diagnosis.
boredom proneness was predictive of GPA. An important finding negatively correlated with GPA, and only boredom proneness and ADHD symptoms were found to be negatively correlated with GPA, and only boredom proneness was predictive of GPA. An important finding with regard to the ABC indicated that the Inattention subscale had a significant negative correlation with GPA, but the Hyperactivity-Impulsivity subscale had no significant correlation with GPA. Contrary to the hypothesis, ACT scores were not significantly associated with boredom proneness, sleep impairment, self-esteem, or symptoms of ADHD.

The findings of the current study suggest that boredom proneness is predictive of GPA. Awareness of the relationships identified in the current study among boredom proneness, sleep disturbances, and self-esteem with symptoms of ADHD in college students could help instructors to monitor the perceived levels of boredom in struggling students and to utilize interactive methods of instruction to reduce students’ proneness to boredom. Such efforts might result in greater student participation and subsequently improve course grades. Instructors also might provide additional assistance to those students to combat boredom proneness, low self-esteem, sleep problems, and symptom-related behaviors of ADHD.

Multiple reasons should be considered as potential explanations for why boredom proneness, sleep disturbance, and self-esteem are associated with symptoms of ADHD, but only boredom proneness contributed significantly to the prediction of academic achievement (as measured by GPA), and none of the variables predicted ACT score. Given the self-report nature of the questionnaire format, it is possible that participants did not provide accurate cumulative GPAs or ACT scores. For a variety of reasons, participants may give self-reports of higher GPAs and ACT scores that might not reflect actual achievement levels. This would impair the accurateness of correlations and regression analyses, resulting in lower correlations than what might really exist. It is also quite possible that GPA and scores on the ACT do not provide precise assessment of academic achievement. Future research on the subject should better define academic achievement, such as in-class participation and performance or time efficiency of studying.

Students’ use of coping strategies may be an additional reason for participants’ reported higher grades. If one is aware of boredom proneness, sleep disturbances, self-esteem issues, and symptoms of ADHD prior to attending college, one might be more likely to seek help early. That is, students would seek out tutoring assistance, behavioral management, and counseling during high school to prepare for post-secondary education, or soon after arriving at college. This allows students to learn various coping strategies to overcome associated issues. For example, behavioral management and counseling would provide assistance for time-efficiency, better decision-making skills, and learning techniques to offset the effects of boredom and ADHD symptoms. Some researchers (Glutting, Youngstrom, & Watkins, 2005) suggest that college students with ADHD symptoms may be a distinct subset in the ADHD population. They proposed that college students with ADHD are more likely to have greater academic ability, to experience better academic success during elementary and secondary school, and to have more efficient adaptive skills than their ADHD counterparts who did not further their education (Glutting et al.). Future research should seek to address these potential issues by further examining the differences within the ADHD population.

The present study expanded current identification of the factors related to symptoms of ADHD first described by Kass et al. (2003). In addition to boredom proneness and sleep disturbance, global self-esteem is negatively associated with a greater number of ADHD symptoms. However, the level of global self-esteem did not contribute to the prediction of academic achievement. Rather than using a global self-esteem measurement such as the Rosenberg Self-Esteem Scale (Rosenberg, 1965, 1989), future research should utilize a questionnaire format that measures specific self-esteem (such as academic self-esteem or self-efficacy). Had a different scale been used, the results of the study might have found a more robust relationship between self-esteem and academic achievement.

In addition, a larger sample size including a greater number of participants indicating a diagnosis of ADHD may have produced results with greater significance. The present study consisted of 166 participants, with only 12 participants being diagnosed with ADHD. The percentage of participants diagnosed with ADHD in the sample approximates the 4–5% prevalence rates of the disorder in the adult population (Ramsay & Rastain, 2005), but it does not constitute a large sample size. The researchers could have potentially inferred diagnosis based on number of symptoms indicated on the ABC; however, the ABC functions more like a self-report screening tool because the additional criteria for diagnosis of ADHD are not included in the scale. Therefore, more diagnosed participants are needed.
to clearly examine them as a subgroup of the ADHD population.

Future research should obtain information pertaining to participants’ medication usage. In the present study, the researchers did not ask participants if they were taking medication to treat symptoms of ADHD. However, such information is pertinent to the strength of the correlations and relationships among the tested variables. A participant diagnosed with ADHD might report fewer symptoms across all measures while taking a prescription to treat ADHD symptoms. This would result in weaker correlations among the measures and inaccurately represent the naturally-occurring relationship among boredom proneness, insomnia symptoms, self-esteem, academic achievement, and ADHD symptoms.

Further, the 166 participants in the study were composed of 114 women and 51 men. ADHD is typically considered a male-dominant disorder, with a typical clinic sample male to female ratio of 9:1 (APA, 1994). The disproportionate number of women in the present study may have affected the results by minimizing the actual relationship among the tested variables. Of the 12 participants who indicated having been diagnosed with ADHD, 3 were men and 9 were women. These demographic findings might suggest a gender imbalance regarding the ability to use coping strategies and gain entrance into college. Future research examining gender differences in college students with ADHD can identify which coping strategies are the most effective for each gender. Establishing clear coping strategies for each gender will assist with skill development to ensure that both genders receive an equal advantage in overcoming the problems associated with symptoms of ADHD.

To summarize, the findings of the study provide support for the existing correlation between boredom proneness, sleep disturbances, self-esteem, and symptoms of ADHD. They suggest that boredom proneness, in particular, is negatively associated with academic achievement (as measured by GPA). These results expand current knowledge about young adults with symptoms of ADHD, specifically regarding the population of college students. Further research should establish whether the findings can be generalized from the sample of college students with ADHD symptoms to the general population of adults with ADHD. This will allow for improved assistance, counseling, and skill development in the classroom, home, and workplace for adults exhibiting symptoms of ADHD.

References