Imagine a student seated in a classroom when a fellow student rushes five minutes late. What will be the first thought that enters the first student’s mind? He or she will probably think that the second student is not very reliable or conscientious. Lewin (1935) first noted that people have a tendency to make causal attributions of social behaviors biased toward internal causes. Heider (1958) and Jones and Harris (1967) subsequently made similar observations. Because of the pervasiveness of this phenomenon, Ross (1977) coined the term fundamental attribution error to describe “the tendency for attributers to underestimate the impact of situational factors and to overestimate the role of dispositional factors in controlling behavior” (p. 183). In the present study, dispositional factors refer to personal traits, thoughts, and other factors that reside within the person; situational factors refer to environmental factors not directly related to the person. The student in our example might be well-organized and responsible but his or her alarm did not go off that day. The impact of situational factors is likely to be underestimated as we commit the fundamental attribution error.

Psychologists have traditionally considered the fundamental attribution error as a universal phenomenon that existed cross-culturally (Morris & Peng, 1994). However, Bond (1983a) suggested the possibility that the fundamental attribution error may vary across cultures and proposed that research should be conducted to understand the role of culture in attribution. He pointed out that the individualistic worldview was pivotal to all attribution theories. It was likely that people from collectivistic cultures make more situational attributions than those from individualistic cultures when explaining the causes of events. Recently, researchers have paid attention to the attributional patterns of bicultural individuals and how they vary in response to different cultural primes. The current study aimed to investigate the role of language on activating cultural mindsets and influencing attributional patterns as a result among Chinese-Western bicultural individuals. The sample included 85 participants (21 men, 64 women) recruited via snowball sampling. Each participant was asked to divide up 100% responsibility between a dispositional cause and a situational cause for a series of events in an online survey in either English or Chinese. Results showed that Chinese-primed bicultural individuals made less situational attributions for positive events than English-primed bicultural individuals ($d = .51$) and that there was no difference in the amount of situational attributions for negative events made by participants in the two conditions. The total length of stay in Western countries did not correlate with the amount of situational attributions a bicultural individual made. The automatic thinking associated with the native language (Chinese) might have cancelled out the effect of cultural priming on the attributional patterns.
Attributional Patterns in Biculturals | Li and Brown

cultures who did not see an individual as a discrete agent would have a different attribution pattern. To support his argument, Bond (1983a) highlighted research findings that Chinese students made more attribution to social circumstances and social relationships in explaining interpersonal events than did American students.

Responding to Bond’s (1983a) call, Miller (1984) sought to investigate the mechanism behind cultural differences in attribution patterns. She interviewed American and Hindu participants ages 8, 11, 15, 18, and older. Participants were asked to describe two prosocial behaviors and two negative behaviors of their acquaintances, and to explain the cause of these behaviors. Miller noticed that young children from American and Hindu cultures did not differ in their attribution pattern. However, American adults made significantly more dispositional attribution and less situational attribution than Hindu adults; the difference was larger in the case of deviant behaviors than prosocial behaviors.

Miller proposed that the fundamental attribution error was the result of cultural socialization and was more prevalent in Western individualistic cultures than in collectivistic cultures. Miller also acknowledged that an alternative explanation of the results was that there were underlying differences in the cause of behaviors in two cultures.

To rule out Miller’s (1984) alternative explanation, Morris and Peng (1994) carried out a series of studies. In Study 1, Chinese and American high school students viewed videotapes of a school of fish swimming and answered in their native language to what extent the movements of the fish were influenced by internal or external factors. In Study 2, the researchers coded reports in a Chinese newspaper and an American newspaper on two recent murders for dispositional and situational attributions. In Study 3, Chinese and American graduate students read about two murders and evaluated the importance of possible causes. Morris and Peng found that (a) Americans attributed the fish’s movements more to internal factors than did the Chinese, (b) American reporters spontaneously made more dispositional attribution than did the Chinese reporters, and (c) Americans regarded personal dispositions as more important factors in leading to the murders than did the Chinese. The researchers thus endorsed Miller’s (1984) conclusion and stated that there were profound cultural differences in the fundamental attribution error in adults.

Later research continued to provide support for cultural differences in attribution patterns. For example, one study revealed that U.S. salespeople attributed their past successful performance to internal factors, whereas Indian salespeople attributed their past successful performance to both internal and external factors (DeCarlo, Agarwal, & Vyas, 2007). In another study, Chinese teachers were found to place more emphasis on family factors when evaluating potential causes of students’ misbehaviors, whereas Australian teachers placed more emphasis on ability (Ho, 2004). Tyson and Hubert (2002) found that Australian adolescents of British (individualistic) cultural backgrounds rated personal explanations as more important regarding juvenile delinquency than did Australian adolescents of Nigerian (collectivistic) background. Upon reviewing numerous studies, Choi, Nisbett, and Norenzayan (1999) reasoned that this cultural difference mainly originated from a stronger preference of situational attribution in Eastern Asian cultures rather than a lack of “dispositionism.”

Research on Bicultural Individuals

To date, most research on cultural differences has involved comparing variables of interest in people from different cultural groups with the assumption that people internalize their culture and view the world based on relevant cultural constructs across situations (Hong, Benet-Martinez, Chiu, & Morris, 2003). An alternative approach to studying cultural differences is the dynamic constructivist approach. The dynamic constructivist approach proposes that an individual can internalize more than one culture and that one activated cultural meaning system guides subsequent actions (Higgins, 1996; Wyer & Srull, 1986). The activation of cultural knowledge, according to Higgins (1996), is based on accessibility of the knowledge and its applicability to the current stimulus.

Researchers recently took the dynamic constructivist approach to study cultural differences in attribution patterns. Hong, Morris, Chiu, and Benet-Martinez (2000) defined bicultural individuals as “people who have internalized two cultures to the extent that both cultures are alive inside of them” (p. 2). They randomly assigned Hong Kong bicultural participants into either the Chinese condition, American condition, or control condition. They found that bicultural individuals primed with Chinese cultural icons were more confident about external explanations of events and more likely to generate external attribution than were bicultural individuals primed with American cultural icons.
and those in the control group; participants in the three conditions did not differ in their internal attribution. Hong and her colleagues (2003) refined their previous experiment by manipulating the salience level of the concept of group. They noted that priming only had a significant impact when in high-salience conditions and proposed that cultural priming worked when the activated constructs were applicable to the test stimuli.

Although research on attributional patterns in bicultural individuals is scarce, studies on other psychological constructs among bicultural individuals are more abundant, providing empirical evidence for the dynamic constructivist approach. Chen, Ng, and Rao (2005) observed that Singapore consumers whose Western values were activated through cultural priming were more impatient than those whose Eastern values were activated. Wong and Hong (2005) revealed that, when facing the prisoner’s dilemma (see Tucker, 1950), Chinese-primed Hong Kong students displayed more cooperation toward friends than American-primed Hong Kong students. It has also been documented that bicultural individuals showed more social connectedness in self-concept and made more interdependent self-statements in self-descriptions when Chinese-primed than when American-primed or in a control condition (Ng & Lai, 2009; Sui, Zhu, & Chiu, 2007).

Language as a Prime

Language is an effective cue used in cultural priming (Krauss & Chiu, 1998). Like cultural icons, language has frequently been employed to activate corresponding cultural constructs in prior research concerning bicultural individuals. Hong Kong students have been found to be more dogmatic, better able to access their collective selves, endorse different values, and display different personalities when tested in Chinese than in English (Bond, 1983b; Chen & Bond, 2010; Earle, 1969; Trafimow, Silverman, Fan, & Law, 1997). Chinese bilinguals have been observed to be more self-enhancing, refer less to interdependent values in self-descriptions, and refer to interpersonal difficulties less often in projecting depressive emotions when responding in English than responding in Chinese (Dixon, 2007; Lee, Oyserman, & Bond, 2010; Ting, 2006). In addition, Matsumoto, Anguas-Wong, and Martinez (2008) noted that Spanish-English bilinguals made more accurate judgments about universal facial expressions when tested in English but reported more intense subjective experiences in Spanish. Lechuga and Wiebe (2011) found that Mexican American bilinguals were more overconfident when primed in Spanish than in English.

To our knowledge, no previous research has looked at language’s effect as a prime in attribution patterns. The current study sought to fill this gap by investigating how the use of language as a prime would influence attributional patterns in Chinese-Western bicultural individuals (i.e., individuals who have a Chinese cultural background but currently live in Western countries). We proposed that language would activate corresponding cultural mindsets and induce bicultural individuals to respond within that mindset. We hypothesized that: (a) the longer the time that a bicultural individual had lived in a Western individualistic country, the less situational attribution he or she would make; (b) Chinese-primed individuals would make more situational attribution for positive events than English-primed individuals; and (c) Chinese-primed individuals would make more situational attribution for negative events than English-primed individuals. A distinction was made between positive (desirable) and negative (undesirable) events because cultural differences in attributional patterns were revealed to be larger concerning negative behaviors (Miller, 1984). The results of this study were expected to provide evidence about the impact of activated cultural mindsets on the attributional responses of biculturals to verbal stimuli, contribute to cross-cultural research on bicultural individuals, and add support for the effectiveness of language as a cultural prime.

Method

Participants

Ninety-seven Chinese-Western bicultural individuals participated in the present study. Of those, 77.6% filled out at least three-fourths of the whole questionnaire. Twelve participants did not meet the criteria for bicultural individuals by not having a Chinese origin, not living in a Western country at the time of data collection, or failing to report current residence, and they were thus excluded from subsequent analyses, resulting in a final sample of 85 participants (21 men, 64 women).

The participants retained for analyses (N = 85) had an average age of 21.20 years (SD = 2.35; two participants did not report their ages). Seventy-five (88.24%) of the participants lived in the United States at the time of data collection, and 10 (11.76%) lived in Western countries other than the United States. All participants were
born in China and indicated that Chinese was their native language. None of the participants reported that English was their native language, but all participants demonstrated satisfactory fluency in English based on reported scores on the Test of English as a Foreign Language, SAT, or GRE (scores did not determine eligibility of inclusion). Among all the participants, 35.29% had lived in Western countries for one year or less, 37.65% for two to three years, 24.71% for four to five years, and 2.35% for six years or longer.

Materials

An online Chinese version and an online English version of the survey was created for the present study. The two versions of the survey had exactly the same content, taking into consideration literary meanings and indications in cultural contexts to the best of our ability.

Both the Chinese version and the English version of the online survey started with an informed consent in Chinese and in English, respectively. The survey had a demographic section, a self-section where causal attributions of self’s behaviors were tested, and an other-section where causal attributions of other’s behaviors were tested. The inclusion of both a self-section and an other-section was to control for possible biases toward self or others. Scenarios in the self-section were grouped on one page, and scenarios in the other-section were grouped on another page. The sequence of the two pages was randomized.

Demographics. The demographic section included questions about sex, age, current student status (undergraduate student, graduate student, or no longer a student), current country of residence, country of birth, primary residence (where they spent most of their life), country of origin of parents, proficiency in Chinese and English, and the total length of time they had spent in Western countries.

Assessment of attribution. Fourteen scenarios involving an actor and a behavior used in the current study were adopted from Ham and Vonk’s (2003) Attributional Style Questionnaire (ASQ; Peterson et al., 1982) and Expanded Attributional Style Questionnaire-Short (EASQ-S; Whitley, 1991). Ham and Vonk (2003) selected 16 scenarios that best activated both situational and dispositional inferences. Each scenario was accompanied by a word indicating a trait of the actor implied by the behavior as well as a word indicating a situational condition, serving as two potential reasons. For the purpose of the present study, we eliminated six of the 16 scenarios because they related poorly to daily life in this decade, and we slightly altered the content and the wording of the remaining 10 scenarios (such as changing cinema to movie theater) to enhance the understanding according to the feedback from participants in a pilot study. Scenarios were accompanied by sentences instead of words illustrating dispositions or situational conditions. ASQ and EASQ-S were developed to measure an individual’s attributional style and how it related to depression. The researchers adopted two scenarios from ASQ and two from EASQ-S, slightly altered their wording, and added one sentence to each scenario describing a related disposition and one sentence describing a situational condition. The self- and other-sections contained 12 same test scenarios and one different sample scenario. Eight of 12 test scenarios involved negative behaviors and four involved positive behaviors. Based on Miller’s (1984) observation that larger cultural differences were seen associated with negative behaviors, we included more negative scenarios so that we would be more likely to find a significant difference.

The other-section began with instructions asking participants to divide up 100% responsibility of the actor’s behavior described in a given scenario between two potential reasons indicated by two accompanying sentences. A sample scenario that “Paul helps an old lady cross the street” followed the instruction to facilitate the understanding of participants. The first test scenario was that “John gets an A for the test;” the other 11 scenarios appeared in random order. Barrett and Bliss-Moreau (2009) found that women were perceived as more emotional than men even when the same situational information was available. To avoid the sex of the actor becoming a confounding variable, each scenario started with a common male name. The self-section had the same format. The instruction started with “imagine yourself as the protagonist” and the rest was the same as in the other-section. The sample scenario was that “You become very rich.” The first test scenario was that “You leave the movie theater smiling;” the other 11 scenarios appeared in random order. Each scenario started with “You.” The sequence of two reasons accompanying each scenario was randomized. Participants were allowed to skip any questions. However, an error message would appear if they put two numbers for two reasons that do not add up to 100 for a scenario. Adding up points of a certain event category yielded a total score for
that category. For example, a participant’s score of situational factors for positive events was calculated by adding up all points that he or she attributed to situational factors for positive events in self-and other-sections.

Procedure
Participants were recruited using a snowball sampling technique by e-mails, postings on social network websites (i.e., Facebook®, Renren®, Douban®), and instant messages. The recruitment statement asked for participants who were Chinese and currently living in Western countries. Among the survey links sent out, half contained the link to the English version and half to the Chinese version; participants were not randomly assigned to conditions. Participation in this study was completely voluntary. There was no compensation or direct benefit associated with participating. All information collected in this study was anonymous. The study was approved by the institutional review board of the authors’ institution before the recruitment started. Once participants were recruited, the qualifications for retaining them in the analyses was that they must be 18 years of age or older, live in a Western country at the time of participation, and have at least one parent from China.

Results
Table 1 summarizes the descriptive statistics of situational attribution made by participants in the English and in the Chinese conditions for the different types of events (descriptive statistics for dispositional factors were omitted because points attributed to the dispositional factor plus those to the situational factor of an event always equal 100). Initial analyses were conducted to compare the total amount of situational attribution made by participants in the two conditions. Results of paired-samples t tests revealed that participants in the English condition made a comparable amount of situational attribution and dispositional attribution for negative events, t(33) = -3.16, p = .003, d = -1.10, and for positive events, t(33) = -3.79, p = .001, d = -1.32. Attribution made by participants in the Chinese condition showed the same pattern for negative events, t(39) = -4.61, p < .001, d = -1.48, but not for positive events, t(39) = -1.89, p = .07, d = -.61.

The first hypothesis was that the longer participants have lived in Western countries, the less total situational attribution they would make in both the self- and other-sections. A Pearson correlation revealed a nonsignificant result, r = -.05, p = .64.

The other two hypotheses were that, for positive and negative events, Chinese-primed participants would make more situational attribution than English-primed participants. The results of the analyses did not support these hypotheses. An independent-samples t test revealed that, for positive events, participants in the Chinese condition made less situational attributions than those in the English condition, t(72) = 2.14, p = .03, d = .51, which was the opposite of the hypothesis. A second independent-samples t test revealed no significant difference between the two conditions concerning situational attribution for negative events, t(72) = -1.75, p = .08, d = -.41.

Follow-up analyses were conducted to investigate the effect of the supposed actor on participants in the English and in the Chinese condition. When self- and other-section were examined separately, a significant difference was found between situational attribution for positive events in the self-section by participants in the Chinese

<table>
<thead>
<tr>
<th>Variable</th>
<th>English condition</th>
<th>Chinese condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative events</td>
<td>Self-section</td>
<td>Other-section</td>
</tr>
<tr>
<td>M</td>
<td>434.47</td>
<td>374.54</td>
</tr>
<tr>
<td>SD</td>
<td>85.76</td>
<td>66.07</td>
</tr>
<tr>
<td>Negative events</td>
<td>Positve events</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>468.56</td>
<td>396.00</td>
</tr>
<tr>
<td>SD</td>
<td>106.13</td>
<td>84.42</td>
</tr>
<tr>
<td>Other-section</td>
<td>Self-section</td>
<td>Other-section</td>
</tr>
<tr>
<td>M</td>
<td>173.71</td>
<td>203.92</td>
</tr>
<tr>
<td>SD</td>
<td>36.23</td>
<td>45.35</td>
</tr>
<tr>
<td>Positive events</td>
<td>Other-section</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>161.95</td>
<td>177.00</td>
</tr>
<tr>
<td>SD</td>
<td>47.19</td>
<td>85.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>English condition</th>
<th>Chinese condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive events</td>
<td>Self-section</td>
<td>Other-section</td>
</tr>
<tr>
<td>M</td>
<td>203.92</td>
<td>177.00</td>
</tr>
<tr>
<td>SD</td>
<td>45.35</td>
<td>85.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>English condition</th>
<th>Chinese condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive events</td>
<td>Other-section</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>161.95</td>
<td>177.00</td>
</tr>
<tr>
<td>SD</td>
<td>47.19</td>
<td>85.76</td>
</tr>
</tbody>
</table>

To explore whether the supposed actor in each scenario affected the participants’ attribution of responsibility, paired-samples t tests were conducted to examine the difference between the amount of situational attribution made in the self- and the other-section. Participants in the English condition assigned more responsibility to situational factors when they were in the self-section than in the other-section for positive events, t(33) = -3.16, p = .003, d = -1.10, and for negative events, t(33) = -3.79, p = .001, d = -1.32. Attribution made by participants in the Chinese condition showed the same pattern for negative events, t(39) = -4.61, p < .001, d = -1.48, but not for positive events, t(39) = -1.89, p = .07, d = -.61.

The first hypothesis was that the longer participants have lived in Western countries, the less total situational attribution they would make in both the self- and other-sections. A Pearson correlation revealed a nonsignificant result, r = -.05, p = .64.

The other two hypotheses were that, for positive and negative events, Chinese-primed participants would make more situational attribution than English-primed participants. The results of the analyses did not support these hypotheses. An independent-samples t test revealed that, for positive events, participants in the Chinese condition made less situational attributions than those in the English condition, t(72) = 2.14, p = .03, d = .51, which was the opposite of the hypothesis. A second independent-samples t test revealed no significant difference between the two conditions concerning situational attribution for negative events, t(72) = -1.75, p = .08, d = -.41.

Follow-up analyses were conducted to investigate the effect of the supposed actor on participants in the English and in the Chinese condition. When self- and other-section were examined separately, a significant difference was found between situational attribution for positive events in the self-section by participants in the Chinese
Attributional Patterns in Biculturals | Li and Brown

condition (\(M = 177.00, SD = 50.14\)) and participants in the English condition (\(M = 203.92, SD = 45.34\)), \(t(81) = 2.54, p = .01, d = .56\). Participants who took the survey in English made more situational attributions than participants who took the survey in Chinese when they were answering positive events in the self-section. However, there was no difference between the amount of situational attributions made by participants in the Chinese and in the English condition for positive events in the other-section, \(t(74) = 1.20, p = .233\), for negative events in the other-section, \(t(74) = -1.22, p = .23\), or for negative events in the self-section, \(t(81) = -1.59, p = .12\).

Discussion

The current study sought to investigate the role of language on the activation of cultural mindsets and on the attribution of responsibility among Chinese bicultural individuals. We found that participants in the English condition attributed a similar amount of responsibility to situational and dispositional factors for negative events, but more responsibility to dispositional than situational factors for positive events. Interestingly, participants in the Chinese condition attributed more responsibility to situational than dispositional factors for negative events, but more responsibility to dispositional than situational factors for positive events. Participants in the English condition made more situational attributions in the self-section than in the other-section, whereas participants in the Chinese condition only did so for negative events.

None of our hypotheses were supported. The correlation between the total length of stay in Western countries and the amount of situational attributions made by participants was not significant. We did not observe a difference in the amount of situational attributions made by participants in the two conditions for negative events. Moreover, contrary to our hypothesis, participants in the Chinese condition made less situational attributions than participants in the English condition for positive events; the difference was mainly due to the smaller amount of situational attributions made by Chinese-primed participants in the self-section.

To explain our findings, we propose that there could be another mechanism other than cultural priming at work when participants were completing the questionnaires such as the rational and controlled thinking associated with the foreign language (English). Research has found that people exhibit less bias when making decisions in a foreign language than in their native language, which might be due to the increased psychological distance and the reduction of emotional reaction associated with a foreign language (Keysar, Hayakawa, & An, 2012). Also, the cultural difference in attributional patterns has been found to be wider when people engage in automatic thinking rather than controlled thinking (Lieberman, Jarcho, & Ohayashi, 2005). Therefore, our results might have been produced by two simultaneous processes; when participants were answering the survey in English, (a) their individualistic cultural mindset was activated, leading them to make more dispositional attribution, and (b) English, as a foreign language, facilitated critical thinking and deliberation, leading them to correct for the fundamental attribution error. The opposite processes occurred with participants in the Chinese condition because their collectivistic cultural mindset led them to make more situational attribution and their automatic thinking associated with their native language prevented them from examining the testing scenarios more carefully. Consequently, the effects of the two processes cancelled out, resulting in similar amounts of situational attribution in the two conditions. Because the cultural difference in the attributional pattern has been revealed to be smaller with positive events (Morris & Peng, 1994), the effect of native language might have surpassed the effect of cultural priming, producing one of the most surprising findings that Chinese-primed participants made less situational attributions than English-primed participants for positive events.

This explanation would not contradict previous findings where language was used successfully as a prime. Rational thinking and reasoning was not examined in the studies with Chinese bilinguals (Bond, 1983b; Chen & Bond, 2010; Dixon, 2007; Earle, 1969; Lee, Oyserman, & Bond, 2010; Ting, 2006; Trafimow et al., 1997), so the proposed process above would not have affected their findings. Meanwhile, Spanish bilinguals were found to be more accurate in judging facial expressions and less overconfident when tested in English (Lechuga & Wiebe, 2011; Matsumoto et al., 2008), which was confirmatory concerning our explanation.

Aside from the possibility that language might have acted as a double-edged sword, there are other potential reasons why our findings contradicted those of Hong et al. (2000). The different populations from which the samples were drawn...
might be one of the reasons responsible for the disparity. In Hong et al. (2000), participants were Hong Kong students who had been exposed to the individualistic culture extensively since childhood and communicated in English in various settings. Although no information was obtained about whether the participants identified English as their native language, it is reasonable to speculate that a large proportion of the sample would do so. In comparison, none of the participants in the current study indicated that English was their native language and the current societal environment in China allows much less interaction with Western ideologies than that in Hong Kong in the 1990s. Despite their stay in Western countries and their preparation before coming, the sample in the current study might not have internalized the individualistic culture to the extent that participants in Hong et al.’s (2000) study had. Therefore, the English language of the survey might have failed to activate their individualistic cultural mindset because it was not as accessible, or it had not been established.

The difference in the procedures used in the current study and Hong et al.’s (2000) study to activate cultural mindset is another possible reason for the difference between our findings and Hong et al.’s (2000). Hong and her colleagues (2000) showed their participants pictures of cultural icons and asked them to answer multiple questions about the pictures. These questions might have led the participants to think about the culture represented in the pictures. In our study, no such step was employed to enhance the priming effect of language. Answering demographic questions in a language prior to responding to the testing scenarios might not be sufficient to activate the corresponding cultural mindset.

Another difference between the current study and Hong et al.’s (2000) study was the way that attributional patterns were examined. In Hong et al.’s study, participants noted their attributional patterns by indicating whether internal or external factors explained events. However, in the current study, participants were required to divide up 100% responsibility between a situational factor and a dispositional factor for each scenario. We chose this design over Hong et al.’s because it would yield ratio level data and allow more rigorous analyses. However, it forced participants to evaluate the factors against each other and to make more careful and less spontaneous attributions. Therefore, the previously observed difference in attributional pattern was minimized.

The current study added to the limited amount of literature on the cultural difference in attributional patterns of Chinese bicultural individuals. The unexpected findings of the current study raised the question about the role of native language in cognition and called to attention that native language may function as a confounding variable in bicultural research using language as a prime. The automatic thinking process in native language may interact with other mental processes that researchers intend to investigate. Future studies may examine both emotional facets and reasoning (or controlled thinking) when using language as a prime to see if the effect would be different. Besides, previous research on this topic mainly recruited Hong Kong students (Hong et al., 2000, 2003). Although Hong Kong students provide an ideal representation of bicultural individuals, another group that is worth more research attention is Chinese individuals in Western countries. The present study focused on this underrepresented population in research and shed light on the possible differences in cultural frame internalization between this group and Hong Kong students.

Meanwhile, there were limitations to this study. Due to the nature of the online survey, participants were not randomly assigned to each condition. In the process of the distribution of two versions of online surveys, we systematically avoided characteristic differences between those who received the invitation to the Chinese survey and those to the English survey. However, without random assignment to conditions, we were not certain whether a participant variable became the confounding variable. Another problem associated with our online survey was the low completion rate. Among participants who were retained for analyses, 11 completed only one section of the testing scenarios (either the self- or other-section), resulting in a smaller sample size in relevant statistical analysis. The difference in the amount of situational attribution made by participants in two conditions was approaching significance ($p = .08, d = -.41$). If we had a larger sample, we might have been better able to detect differences in attributional patterns. In addition, the sample in this study was a convenient sample of the population. Those who self-selected to participate might differ in important aspects from those who did not.

There are several directions that future research can pursue. Researchers may utilize...
Attributional Patterns in Biculturals

DeCarlo, T. E., Agarwal, S., & Vyas, S. B. (2007). Performance expectations of situational attribution for negative events and bicultural individuals made comparable amounts of situational attribution for negative events and less for positive events. We suggest that future researchers take into consideration the role of native language in automatic thinking when using language as a prime.

In conclusion, the current study examined attributional patterns in Chinese bicultural individuals who lived in Western countries using language as a prime. We found that the length of time an individual had lived in a Western country did not affect the amount of situational attribution that he or she made and that, compared to English-primed bicultural individuals, Chinese-primed bicultural individuals made comparable amounts of situational attribution for negative events and less for positive events. We suggest that future researchers take into consideration the role of native language in automatic thinking when using language as a prime.

References

Author Note. Sijia Li and Carrie M. Brown, Agnes Scott College, GA. Sijia Li is now at University of West Florida. Correspondence regarding this paper should be directed to Sijia Li at sl44@students.uwf.edu or at 141 E. College Ave., Decatur, GA, 30030.