The Effects of Perceived Attractiveness on Expected Opening Gambit Style
University of Central Arkansas

ABSTRACT. Opening gambits, informally known as pick-up lines, are brief verbal transmissions generally used to initiate a conversation with a potential mate. One potential factor that could play a role in the effectiveness of an opening gambit is the physical appearance of the contributor. A person’s physical appearance can be influential on other’s opinions and judgments, often leading into stereotyped expectations. The present study addressed the possibility that opening gambit expectations, from the perspective of the recipient, would be impacted by the approaching individuals’ physical appearance, specifically their facial attractiveness. Results indicated that participants expected attractive individuals to use direct opening gambits ($M = 10.84, SD = 3.33$) more often than less attractive individuals ($M = 5.87, SD = 2.87$), $F(1,114) = 72.97, p < .001, \eta^2_p = .39$. Less attractive individuals were expected to more often use innocuous (Less attractive: $M = 11.75, SD = 4.55$; Attractive: $M = 9.64, SD = 2.01$), $F(1,114) = 8.91, p = .003, \eta^2_p = .07$, or flippant opening gambits (Less attractive: $M = 7.28, SD = 4.35$; Attractive: $M = 4.62, SD = 2.25$), $F(1,114) = 13.01, p < .001, \eta^2_p = .10$. The results also showed interactions between the expected opening gambits usage, the attractiveness of the stimulus, and the target gender stimulus. This study illustrates the impact that perceptions of facial attractiveness have on expectations regarding the initiation of social interactions and potential romantic relationships.

The first interaction with a potential romantic partner is a crucial moment. The impressions that form from these first interactions can have a lasting impact on the social dynamic. Researchers have demonstrated that the formation of first impressions is an automatic process, sometimes occurring without conscious awareness (Todorov & Porter, 2014). These initial evaluations then influence later judgments about an individual (Kahneman, 2011). Expectations regarding a social interaction begin to form at first sight. The physical characteristics of an initiator, including facial cues, are an important component of the preliminary evaluation of an initiator and can be a strong determinant in a recipient’s willingness to pursue further interaction (Schröder-Abé, Rentzsch, Asendorpf, & Penke, 2016). Another important determinant of the expectations for a social interaction is the opening line used to initiate the interaction. Bale, Morrison, and Caryl (2006) suggested that opening lines are important because they can serve as a form of display, providing information about the qualities that an initiator possesses. Because social interactions are influenced

*Faculty mentor

https://doi.org/10.24839/2325-7342.JN23.3.251
by both the initial visual and verbal interactions, the present study explored the interaction between facial attractiveness and expected opening line usage.

Conversation initiators often rely on opening gambits, informally known as pickup lines, to begin social interactions. Opening gambits are typically viewed as being direct, innocuous, and flippant (Cunningham, 1989). Direct opening gambits are statements or questions that explicitly demonstrate an individual’s intention to a recipient such as, “Hey beautiful, how are you today? Would you like to go out for a cup of coffee?” Innocuous opening gambits are statements or questions that could be considered open ended. For example, “Hey, I’m new around here, where’s your favorite place?” Innocuous gambits typically do not directly display affection or romantic intent, but they do display one’s interest in engaging a recipient in conversation (Lewandowski, Jr., Ciarocco, Pettenato, & Stephan, 2012). Finally, flippant opening gambits are the stereotypical pick-up lines that could be interpreted as cute or funny (Lewandowski et al., 2012). An example of a flippant pick up line is, “Do you know how much a polar bear weighs? Enough to break the ice. Hi, I’m (insert name here).” (For additional examples of opening gambits, see the Appendix).

Although the choice of opening gambit provides information about an initiator, mate selection information is provided even before the first words are spoken as a recipient evaluates the attractiveness of the initiator. Attractiveness is often considered a socially constructed quality assigned to individuals based on their apparent traits and other’s perceptions of them. Within the context of the present study, being considered attractive would imply that an individual is visually appealing to others. Generally, attractiveness ratings are developed based on distinct physical features. Classic research has found that physically attractive individuals receive more favorable social encounters than individuals who are considered less attractive (Adams, 1977). Recent research has identified important social consequences of attractiveness such as higher career success rates, more romantic interactions, and others’ subjective views of the attractive individual as possessing other positive, high quality traits (Little, Jones, & DeBruine, 2011). More attractive people have higher ratings of self-confidence and often display an extroverted personality (Talamas, Mavor, & Perrett, 2016). Surprisingly, this extroverted trait can be determined after only 50 ms of exposure to a face (Talamas et al., 2016). Although many factors influence attractiveness, the current study focused specifically on facial attractiveness.

Facial attractiveness is dependent on certain facial cues and traits that are readily identified and analyzed by an evaluator, and the characteristics associated with an attractive face are generally agreed upon across cultures and individuals (Little, 2014). The discrimination of physical factors involved in the mate-selection process may trace back to increased reproductive fitness associated with success in finding mates fit to reproduce. Feminine facial qualities such as large eyes, smooth skin, and big lips are seen as attractive because these are indicators of female fertility (Meltzer, McNulty, Jackson, & Karney, 2014). Other facial features that have an evolutionary impact on mate selection are youthful attributes, weight cues, facial coloration, averageness, symmetry, and masculinity or femininity (Little, 2014). Within this evolutionary view, people value attractive qualities in mates primarily because these qualities act as indicators of good genetics. Individuals who possess these genes have an increased potential for reproductive success (Little, 2014). An initial evaluation of facial characteristics provides information regarding this potential reproductive fitness.

In addition to potential evolutionary benefits, attractive individuals have also been found to be more successful than less attractive individuals in inducing positive social encounters (Adams, 1977). This suggests that attractive individuals are perceived to possess personality traits or social behaviors that influence others around them, resulting in higher ratings of likability, agreeableness, and desirability. This tendency for a single observation to influence multiple judgments is an example of exaggerated emotional coherence, commonly referred to as the halo effect (Kahneman, 2011). The halo effect is a cognitive bias in which the overall opinion of one dimension of a person influences beliefs about other traits relative to that individual. This bias has the ability to influence a recipient’s perception of an approaching individual in a social encounter by exaggerating the reliability of evaluations. If a target perceives an approaching individual as attractive, based on facial characteristics, the opening gambit the recipient receives could be viewed as more desirable or attractive due to the initiator’s physical appearance. The role of expectations created by facial attractiveness is an important aspect in the
formation of novel impressions, as well as the social norms of attractiveness and the success of intuitive analysis of an individual.

The facial attractiveness of a relationship initiator may be an influential factor in the development of expectations for the social interaction. Previous research has shown that the more attractive that individuals are perceived to be, the more often they are paired with a direct opening gambit (Cooper, O’Donnell, Caryl, Morrison, & Bale, 2007). Men who are perceived as more dominant and attractive than average have been found to prefer using direct style opening gambits (Ahmetoglu & Swami, 2012). Men who are perceived as less attractive are generally paired with either innocuous or flippant opening gambits (Ahmetoglu & Swami, 2012). Including facial attractiveness, the physical appearance of a woman can also influence a man’s choice of opening gambit style during a social encounter. Men are more likely to select a direct opening gambit for women who they perceive to be more physically attractive. In contrast, women with lower attractiveness ratings frequently receive innocuous or flippant style opening gambits (Wade, Butrie, & Hoffman, 2009). Along with perceived attractiveness, women who are seen as fit (e.g., having a slim body size) are seen as more attractive than those who are perceived as less fit (Swami et al., 2010). Women with lower attractiveness ratings frequently receive innocuous or flippant style opening gambits (Wade et al., 2009).

Men tend to be influenced by halo effects more often than women when rating attractiveness (Lorenzo, Biesanz, & Human, 2010). Within the halo effect, dialogue from attractive individuals could be seen as more competent and influential, simply due to their desirable physical characteristics. Lammers, Davis, Davidson, and Hogue (2016) found that, with a single headshot photograph, a person can decide whether someone is attractive or not. Adams (2012) demonstrated the impact of first impressions on a single head shot by cropping a picture to include just face and hair. This research found that desirable traits positively correlated with attractiveness ratings.

Direct opening gambits are not only associated with higher levels of physical attractiveness, but they are also found to be more effective in capturing a potential mate’s attention. Research has shown that men prefer more attractive women to use direct opening gambits when approaching them (Wade et al., 2009). Examples of lines men found more effective were “Want to go watch a movie tonight?” “Want to hang out later?” and “Want to go to a bar later?” Thus, results have demonstrated that direct opening gambits were more effective in capturing the attention of a potential mate, compared to the other opening gambit styles.

Although previous research has examined receptivity to lines used by people of differing levels of attractiveness, the current study set out to investigate the recipients’ expectations regarding the type of opening gambit that would be used by initiators with varying ratings of attractiveness. Expectations tend to shape the initial reactions to social interactions. Understanding how attractiveness influences a person’s expectations regarding how a person would initiate a social interaction is an important step in developing an understanding of receptivity to different styles of relationship initiation. The primary hypothesis for the current study predicted that more attractive individuals would be expected to use a direct style of opening gambit. A secondary hypothesis predicted that less attractive individuals would be expected to present an innocuous or flippant style of opening gambit significantly more than a direct style of opening gambit.

Method

Participants

Participants involved in this study were 121 undergraduate students from the sponsoring university. Participants were recruited through social media sites such as Facebook, GroupMe, and Twitter, as well as an online participant pool hosted by Sona Systems. Sixty-three participants who were enrolled in psychology courses at the University of Central Arkansas registered for the study through the Sona participant pool. The remainder of the participants (n = 58) chose to participate through email or social media invitations.

Participants ranged from 18 to 51 years of age, with a mean of 20.90 years (SD = 3.62). Eighty-six participants were women (71.1% of the sample; 1 participant did not report gender). Thirty-two participants reported an exclusive or predominant sexual attraction to women, 86 reported an exclusive or predominant attraction for men, and two reported an equal attraction to men and women (1 participant did not report sexual attraction). The two participants reporting a mixed attraction were given participation credit without completing the opening gambit or stimulus ranking tasks due to uncertainty about which stimuli to present during the task. The only demographics collected were age, gender, and the participant’s self-reported sexual
attraction. No information was collected regarding participant race or ethnicity.

Participants recruited through the Sona participant pool received one research credit for completing the study. Depending on the participant’s course instructor, Sona credits were exchanged for course points. All procedures were approved by the Institutional Review Board of the University of Central Arkansas. Participant interactions were in accordance with the ethical standards and code of conduct for psychologists (American Psychological Association, 2017).

The size of the sample was driven by the demographics of the undergraduate psychology program at our institution and the constraints of the class project. Due to the novel procedure created for this study and lack of time in the course to conduct a pilot study, prior information on the standard deviation for the opening gambit ratings task was not available to conduct a priori power analyses to determine the ideal sample size. Instead, the sample size was determined by: (a) the time available to run the study (4 weeks) and (b) the goal of collecting responses from at least 30 men (approximately 72% of the students enrolled in psychology courses at the University of Central Arkansas are women).

Materials
All materials were presented online. The online survey was developed and distributed using the Qualtrics web platform. The online survey included (a) the informed consent form, (b) demographic questions on gender, age, and participants’ reported sexual preference, (c) the opening gambit selection task, (d) an attractiveness rating task, and (e) a debriefing statement.

Opening gambit selection. The 15 opening gambits used in this study were developed through a multistep process. This project was completed as part of an undergraduate research methods laboratory class. The first assignment for the 12 members of the research class was to identify a list of opening gambits from their personal experience. This activity resulted in an initial list of 95 opening gambits that the class members had either used themselves, heard others use, or had personally been presented in real-world encounters. Rather than using existing opening gambits from the published literature, this approach was selected in order to generate a novel set of gambits that were modern and relevant to the participant pool, as well as to give the class the experience of generating items for a research study.

The 95-item list was trimmed down to the final 15 items shown in the Appendix through several steps. First, the research team separated into four groups of three people each to categorize each gambit as direct, innocuous, or flippant. All four groups agreed on the categorization of 72 of the 95 (76%) opening gambits on this first independent ranking. The groups then separately reviewed the 23 gambits that did not have a consensus type and recategorized these. Groups were not told how the other groups originally categorized these gambits. This second round of categorization resulted in agreement on 86 of the 95 gambits (91%). A final category determination was made by the entire research group, resulting in 100% agreement for the 95 opening gambits. Next, the four groups of students selected their top 10 gambits in each of the three categories. At this point, any gambit that was not identified in the top 10 for its category by at least one group was removed from further consideration. Finally, each of the 12 members of the class independently identified their top five gambits in each category using an online Excel sheet. The five gambits for each category that were most often selected in the top five grouping by the research class members were retained for use in this study. All 15 of these items had unanimous agreement during the first round of categorization. The list of opening gambits, and their classification type, are shown in the Appendix.

Facial stimuli. The photographs presented to participants during the study were chosen from the Chicago Face Database (Ma, Correll, & Wittenbrink, 2015). The Chicago Face Database provides standardized photographs of male and female faces of varying race and ages. Stimuli used for the study were selected based on standardized attractiveness scores and race. All stimuli selected showed a neutral facial expression because previous research supported the neutral or happy faces as being viewed as more attractive (Mueser, Grau, Sussman, & Rosen, 1984). Neutral and happy facial expressions were not shown to differ in physical attractiveness ratings in the Mueser and colleagues study (1984). Although the Chicago Face Database scores stimuli on a variety of dimensions, only the attractiveness ratings of male and female models between the ages of 19 and 26 were evaluated for this study. The research team selected five photographs of women rated more attractive and five photographs of women who were rated less attractive. The same method was replicated for the pictures of men used in the study.

Ratings for the men and women in the Chicago
Face Database were based on a 9-point Likert-type scale from 1 (unattractive) to 9 (highly attractive). For both the attractive rated pictures of women and men, the highest ranked stimulus for each race was selected. These ratings were between 3.8 to 5 for men and 4.7 to 5.4 for women. The less attractive stimuli were selected from the lowest Likert scaled scores on attractiveness for each race for both men and women. These ratings were between 1.7 and 2.2. The races of the models presented in the stimuli included three White women and men, three Black women and men, two Latino women and men, and two Asian women and men. The distribution of race for the racial stimuli was selected based on the demographics of the host university where the majority races are White and Black. Asian and Latino faces were included to ensure diversity of the sample stimuli. The age of the men selected was 23 to 26; the age of the women selected was 19 to 26. A 2 (gender of model) x 2 (high/low attractiveness) x 4 (race of model) Analysis of Variance (ANOVA) on the attractiveness ratings from the Chicago Face database found that the attractiveness of the stimuli differed in terms of gender (women: M = 3.61, SD = 1.59; men: M = 3.23, SD = 1.30), F(1, 19) = 10.53, p = .03, η² = .33, and attractiveness level (high: M = 4.80, SD = 0.50; low: M = 2.03, SD = 0.24), F(1, 19) = 567.49, p < .001, η² = .99. No difference was found as a function of the race of the stimuli, F(3,19) = 1.21, p = .41, η² = .48. The interaction between gender and attractiveness level was not significant, F(1,19) = 1.69, p = .21, nor was the interaction between race and attractiveness level, F(1,19) = 3.32, p = .14, η² = .21. These statistical differences confirmed that the low and high attractiveness stimuli did differ in terms of attractiveness and that there were no systematic differences across the four races represented.

A similar 2 (gender of model) x 2 (high/low attractiveness) x 4 (race of model) ANOVA explored differences in age across the stimuli. This test found no difference in age across gender F(1,19) = 0.44, p = .54, η² = .10, attractiveness level F(1,19) = 1.91, p = .24, η² = .03, or race F(3, 19) = .89, p = .52, η² = .03. The interactions between these variables were also not significant: gender by race, F(3,19) = 0.95, p = .50, η² = .04; gender by attractiveness level, F(1,19) = 5.24, p = .08, η² = .23; race by attractiveness level, F(3, 19) = 3.41, p = .13, η² = .22; and gender by attractiveness level x race, F(3,19) = 4.47, p = .09, η² = .25.

Opening gambit multiple-choice. Participants were shown either the five men or the five women, depending on the participants’ reported sexual preference. Because the stimulus type shown to participants was determined based on self-reported sexual preference and not the participants reported gender, we classified participant responses based on the target stimulus gender throughout the results and discussion. Each stimulus headshot was presented five times, each time with three different opening gambits, one of each opening gambit type (direct, flippant, and innocuous). The opening gambits and the opening gambit triplicates that were shown to participants are shown in the Appendix. Each of the 10 stimuli (5 attractive and 5 less attractive) was shown five times, for a total of 50 trials. Order of presentation was randomized across participants. Participants were asked to select the gambit they thought the person in the photo would most likely use.

Attractiveness rating. To verify that participants viewed the facial attractiveness of the facial stimuli differently across conditions, each of the 10 photographs within a sex was presented to participants with a Likert-type scale ranging from 0 (unattractive) to 5 (extremely attractive). Participants indicated the level of attractiveness that they thought best described the pictured individual. The full materials for this study are available for review/download from the Open Science Framework: https://osf.io/yf6zt/

Procedure

Participants completed the study in a location of their choosing. All materials were presented online. The survey required approximately 15 minutes to complete. Participants were supplied with an informed consent cover letter at the beginning of the study. Participants who accepted the informed consent were then asked to answer questions about their age, gender (woman, man, or other), and self-reported sexual preference (“I am exclusively or predominantly interested in women,” “I am equally interested in women and men,” and “I am exclusively or predominantly interested in men”). Participants then completed the opening gambit selection task followed by the stimulus ratings task. The procedures were the same for each participant regardless of gender or their reported sexual preference, with the only difference being that those who reported a primary interest in women were shown the pictures of women while those who reported a primary interest in men were shown the pictures...
of men. After the opening gambit selection task, participants completed the attractiveness rating task. The order of presentation of stimuli was randomized within both the opening gambit selection and the stimulus rating tasks. Once participants completed the survey, they were presented with a debriefing statement.

Results

A total of 121 women and men participated in our research study. We excluded five participants due to incomplete participation or reporting an equal sexual attraction to women and men. Eighty-three of the 86 women in the sample reported an exclusive or predominant sexual attraction to men (96.51%), one reported an exclusive or predominant attraction to women, and two reported an equal attraction to both. Of the 34 men who participated in the study, 31 reported an exclusive or predominant sexual attraction to women and three reported an exclusive or predominant attraction to men (91.18%). Two participants reported an equal preference between men and women. Participants’ reported sexual preference was not included as a variable in the analyses due to the small number of same-sex preference reported by participants (only 6 of the 121 participants, 4.96% of the sample).

Stimuli Ratings

To evaluate the effectiveness of the attractiveness intervention across facial stimulus type, a general measure of attractiveness was calculated by summing the ratings for the five pictures in the more attractive and less attractive categories. Possible total attractiveness scores for each participant ranged from 0 to 25. The mean total attractiveness score for the attractive pictures of women was 15.13 (SD = 5.37). The mean total attractiveness for the less attractive pictures of women was 3.97 (SD = 3.06). For the pictures of men, the mean total ratings for the attractive and less attractive stimuli were 14.64 (SD = 4.56) and 3.26 (SD = 3.24), respectively. Differences between these groups were evaluated using a 2 (attractive or less attractive; within-subject) x 2 (target stimulus gender, men or women; between-subject) mixed-measures ANOVA. This test found a main effect of picture type (attractive or less attractive), F(1, 116) = 694.68, p < .001, ηp2 = .86, but not a main effect of target stimulus gender, F(1, 116) = 0.68, p = .41, ηp2 = .006, or interaction between these variables, F(1, 116) = .07, p = .79, ηp2 = .001. Results displayed in Figure 1 show the clear separation in attractiveness ratings across the attractive and less attractive stimuli types.

Opening Gambits and Attractiveness

The main hypotheses for this study were evaluated using three repeated-measures ANOVAs, one for each opening gambit type (flippant, direct, and innocuous). The separate analyses were required due to the dependent nature of the gambit selection activity. Because participants were forced to select one of the three gambit types on each of the 50 questions, omnibus tests including stimulus type (attractive or less attractive), stimulus attraction (men or women), and participant gender (woman or man) always resulted in a nonsignificant difference due to the identical means across the levels of these groups. All follow-up testing used Bonferroni corrected pairwise comparisons.
Hypothesis 1
The first hypothesis stated that attractive individuals would use direct opening gambits more than less attractive individuals. This hypothesis was evaluated using a repeated-measures ANOVA with target stimulus gender (men, women; between-subject) and stimulus type (attractive, less attractive; within-subject) as the independent variables and number of selections of the direct opening gambit as the dependent variable. The mean number of times the direct line was selected for the attractive stimuli (M = 10.84, SD = 3.33) compared to the number of times direct lines were selected for the less attractive stimuli (M = 5.94, SD = 2.87) was significantly different, F(1, 114) = 72.97, p < .001, η² = .39. These differences are shown as the far right bars on Figure 2.

The difference in expected usage of direct opening gambits by the pictured men (M = 8.86, SD = 1.70) differed significantly from the mean expected usage of direct lines by the pictured women (M = 7.10, SD = 2.16), F(1, 114) = 21.02, p < .001, η² = .16. The interaction between stimulus type and target stimulus gender was also statistically significant, F(1, 114) = 14.34, p < .001, η² = .11. The right pair of bars on the top (attractive) and bottom (less attractive) panels of Figure 3 show this interaction.

A series of t tests explored the significant interaction between target stimulus gender and attractiveness. Two dependent-samples t tests compared expected usage for attractive compared to unattractive men and for attractive compared to unattractive women. Expected usage of direct gambits by attractive (M = 8.23, SD = 4.04) and unattractive (M = 5.97, SD = 3.38) women differed significantly, t(30) = 2.07, p = .047, d = 0.53. A significant difference was also observed between attractive (M = 11.79, SD = 2.44) and unattractive (M = 5.93, SD = 2.68) men, t(84) = 14.09, p < .001, d = 2.29. A visual comparison of the mean difference in expected gambit usage by attractiveness suggests that level of attractiveness had a larger effect on the expected usage of direct gambits by the pictured men than it did the pictured women.

Two independent-samples t tests evaluated the difference in expected direct gambit usage between the pictured men and women for each of the attractiveness types. The expected usage of direct opening gambits by the pictured men and women did not differ for the less attractive stimuli (women: M = 5.97, SD = 3.38; men: M = 5.93, SD = 2.68), t(114) = .06, p = .95, d = 0.01. For the attractive stimuli, the mean expected usage of direct opening gambits for both men and women were higher than that observed for the less attractive stimuli (as indicated by the dependent measures t tests described in the preceding paragraph), but this difference was much greater for the men than the women (men: M = 11.26, SD = 2.44; women: M = 8.23, SD = 4.04), t(114) = -5.77, p < .001, d = -.94.

Although Hypothesis 1 was specifically about the increased usage of direct lines based on level of attractiveness, the hypothesis implies decreased usage in innocuous and flippant lines by attractive individuals compared to unattractive persons. Separate repeated-measures ANOVAs were used to explore differences in expected opening gambit usage between stimulus type (attractive, less attractive) and target stimulus gender (men, women; between-subject) for the innocuous and flippant opening gambits. For the innocuous lines, a main effect was observed for both stimulus type (attractive: M = 9.64, SD = 2.01; less attractive: M = 11.75, SD = 4.55), F(1, 114) = 8.91, p = .003, η² = .07, and target stimulus gender (women: M = 12.29, SD = 3.05; men: M = 10.11, SD = 1.83), F(1, 114) = 21.94, p < .001, η² = .16. The interaction between these variables was not significant, F(1, 114) = 0.56, p = .46, η² = .005. These differences can be seen in the middle panel of Figures 2 and 3.

The 2 x 2 repeated-measures ANOVA exploring differences in expected usage for flippant lines across stimulus type and target stimulus gender revealed a main effect of stimulus type (attractive: M = 4.62, SD = 2.25; less attractive: M = 7.28, SD = 4.35), F(1, 114) = 13.01, p < .001, η² = .10, target stimulus gender (women: M = 5.23, SD = 2.33; men: M = 6.22, SD = 2.16), F(1, 114) = 4.60, p = .03, η² = .04, and the interaction between these two variables, F(1, 114) = 8.34, p = .005, η² = .07.

Similar to the analyses for direct opening gambits, a series of t tests explored the interaction between attractiveness and target stimulus gender. A dependent-measures t test found no difference in mean usage of flippant lines between attractive (M = 5.03, SD = 2.21) and unattractive (M = 5.42, SD = 4.12) women, t(30) = .46, p = .65, d = -.09. The mean difference between attractive (M = 4.47, SD = 2.26) and unattractive (M = 7.96, SD = 4.26) men was statistically significant, t(84) = -6.11, p < .001, d = -.68.

A pair of independent-samples t tests explored the difference in expected flippant gambit usage
between men and women at each level of attractiveness. No difference was found in the expected usage of flippant gambits for attractive women ($M = 5.03$, $SD = 2.21$) or men ($M = 4.47$, $SD = 2.26$), $t(114) = 1.19$, $p = .24$, $d = .25$. However, a significant difference was observed in the expected usage of flippant lines by less attractive women ($M = 5.42$, $SD = 4.12$) compared to men ($M = 7.96$, $SD = 4.26$), $t(114) = -2.87$, $p = .005$, $d = .61$. See the far left columns of Figure 3 for the expected differences in usage of flippant lines by less attractive and attractive women and men. Overall, the analysis of this interaction suggests that unattractive men are expected to use flippant opening gambits more than women, regardless of attractiveness level, or attractive men.

Hypothesis 2

The second hypothesis proposed that less attractive individuals would be predicted to present an innocuous or flippant opening gambit significantly more than a direct opening gambit. This hypothesis was evaluated using a repeated-measures ANOVA with gambit type (3 levels) as the independent variable and expected number of times each type of gambit was expected to be used as the dependent variable. This test only used the ratings for the less attractive stimuli in order to be consistent with the hypothesis. The main effect of gambit type was significant, $F(2, 114) = 51.88$, $p < .001$, $\eta^2_p = .48$. The mean number of times each of the three opening gambits were selected was: flippant: $M = 7.28$, $SD = 4.35$; innocuous: $M = 11.75$, $SD = 4.55$; and direct: $M = 5.94$, $SD = 2.87$. Follow-up dependent measures t tests found significant differences between all pairings of the three gambit types: funny–innocuous, $t(115) = 5.75$, $p < .001$, $d = .53$; funny–direct, $t(115) = 2.49$, $p = .14$, $d = .24$; innocuous–direct, $t(115) = 10.01$, $p < .001$, $d = .94$.

Although Hypothesis 2 focused specifically on the expectations for the less attractive stimuli, we analyzed differences in the expectations for the three opening gambit types for the attractive stimuli as well. Extending Hypothesis 2, we expected that attractive individuals would use direct opening gambits more often than flippant or innocuous. The mean expected usage for the three opening gambit types for the more attractive stimuli were: flippant: $M = 4.62$, $SD = 2.25$; innocuous: $M = 9.64$, $SD = 3.01$; and direct: $M = 10.84$, $SD = 3.33$. These differences were statistically significant, $F(2, 114) = 161.73$, $p < .001$, $\eta^2_p = .74$. Follow-up pairwise testing with dependent-measures t tests found significant differences between the means for all three gambit types: funny–innocuous, $t(115) = -12.72$, $p < .001$, $d = -1.21$; funny–direct, $t(115) = -4.27$, $p < .001$, $d = -1.36$; innocuous–direct, $t(115) = -2.17$, $p = .03$, $d = -0.20$.

Discussion

Expectations often shape how people respond to different social interactions. Because attractiveness is one of the first characteristics people notice in others, expectations tied to physical attractiveness can be some of the most important in shaping social behavior. The purpose of this project was to investigate the effects of perceived attractiveness on opening gambit expectations. Results from the study showed that attractive people, overall, were expected to use direct opening gambits (Hypothesis 1; top panel of Figure 2). People rated as less attractive were expected to employ innocuous opening gambits, with some support for flippant lines (Hypothesis 2; middle and bottom panels of Figure 2). However, these expectations were dependent
on the gender of the stimulus target. Attractive men were expected to use direct gambits more often than unattractive men, but the difference in direct opening gambit usage did not differ across the pictured attractive and unattractive women. When the sample stimulus was an attractive woman, participants expected the model to use innocuous opening gambits most often. When the sample stimulus was a man, however, participants selected the direct opening gambit as the most expected opening gambit. This interaction was different for the less attractive stimuli. Less attractive men were expected to use flippant lines more often than less attractive women, but innocuous lines were selected most often for both sexes. Although flippant opening gambits are the stereotype for pickup lines, these opening gambit types were the least expected for three of the four groups. The exception being that less attractive pictures of men were expected to be paired with flippant lines more than direct lines.

The results from our study give researchers insight on the intuitive nature of humans’ perceptions of others in a social context. Based on characteristics of the initiator, participants had specific expectations. Attractive men were expected to use direct opening gambits, but attractive women were expected to use innocuous lines (later in this discussion, we discuss the importance of exploring the very likely impact of local culture on these expectations). People tend to be most comfortable when their expectations for social situations are met. This research clarified what the expectations are for people’s initiation of social interactions based on how their level of attractiveness is judged. The findings have implications for understanding social stereotyping and discrimination factors among across groups and individuals. An important consideration of the current study is the application of the Expectancy Violations Theory (EVT). The EVT is an interpersonal communication theory that suggests positive expectancy violations can result in more favorable outcomes than expectancy confirmations (Burgoon, 2016). In the context of the current research, the EVT theory might suggest that less attractive individuals using direct opening gambits would be a violation of the social expectation, which may result in improved social outcomes.

Opening gambit expectations may similarly lead to self-fulfilling prophecies in how people respond to and initiate social interactions (Downey, Freitas, Michaelis, & Khouri, 1998). When approached by someone that is perceived to be attractive, the individual being approached may unconsciously signal more openness to the social interaction (orienting toward the individual, increased eye contact). The initiator would then perceive less threat in the social interaction, responding with a more direct opening line. Thus, the initiator expected a direct approach from an attractive individual and behaved in a way that engendered this type of behavior. At the same time, a person who self-perceives as less attractive may nervously approach the social interaction, creating discomfort in the recipient, and thus resulting in unintended withdrawal signals (e.g., orienting away from the participant, decreased eye contact). In both of these examples, the expectations of the initiator and the recipient influence the social interaction, even before verbal exchange begins.

Due to the possibility that the observed expectancies may be involved in interpersonal self-fulfilling prophecies or expectancy violations, a particularly important line of future research should explore the impact of violating the expectation based on facial attractiveness. For example, what is the impact of a less attractive individual using a direct opening gambit (contrary to expectations) or an attractive person using a flippant or innocuous gambit? Would a lack of congruence between expectation and behavior have a detrimental effect on the development of the relationship? Although the goals of the current study were to describe the interaction between facial attractiveness and opening gambit expectations, future research needs to directly explore questions about how these expectations develop, how they might impact social interactions, and how violations of these expectations impact the social dynamics.

Future research should also examine other traits that might influence the opening gambit expectations. Candidate physical traits may be shoulder-to-waist ratios for men, and waist-to-hip ratios for women (Kościński, 2014). Nonphysical factors that may impact the expectations of opening gambits include personality factors or economic status, thus future research would benefit from the investigation of these variables as well. Additionally, racial and ethnic background of the models and participants could be important variables. Although models from different racial backgrounds were used, these data were not analyzed along this dimension. No racial information was collected for participants. Future studies should include these variables, as well as seek a diverse sampling population because cultural context is likely an influence on opening gambit expectations and
receptivity. As mentioned in the study, social context plays an important role in the selection of opening gambits, and future research should examine the association between the different styles of gambits and different environments and social situations. There were several limitations to this study. First, we excluded participants who reported an equal stimulus sexual attraction to men and women. These participants were excluded because it was unclear which set of stimuli they should be shown. Future research should include these participants, providing either a mixed set of stimuli or asking them to identify five attractive or five less attractive stimuli (independent of sex) for use in the study. Similarly, recruiting a sample that includes more participants with nonheterosexual preferences would allow for an exploration of differences in expectations across sexual preference categories. Finally, we did not ask participants for information regarding their racial or ethnic background. It is possible that expectations differ across these categories, and this should be explored in future work.

This study provided an important unexplored component to current literature in the field of social psychology by demonstrating a critical correlation between facial attractiveness and social stereotypes. In addition, the findings of the current study gave further insight to the mate-selection process and the impressive ability to form intuitive expectations of others’ manifested behaviors based on their perceived ratings of facial attractiveness. These expectations in the social context can control how recipients perceive initiators based on the initiators’ social attractiveness. These perceptions may then influence recipients’ willingness to engage with these individuals. This project created a descriptive foundation for additional research into the psychological factors involved in initiating social interactions as well as new insights into how attractiveness influences social expectations.

References
The authors report no conflict of interest in the completion of this project.

This project was completed as a capstone project in PSYC 3340: Research Methods Laboratory. A special thanks to our classmates for their assistance in designing the materials, pilot testing the studies, and reviewing the manuscript. Also, our sincere appreciation toward Sarah Lindeman for comments on multiple drafts of this manuscript.

Correspondence concerning this article should be addressed to Shawn R. Charlton, University of Central Arkansas, Department of Psychology and Counseling, 201 Donaghey Ave, Conway, AR 72035. E-mail: scharlton@uca.edu

APPENDIX

Types of Opening Gambit Styles

<table>
<thead>
<tr>
<th>Opening Gambit Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>D = Direct; I = Innocuous; and F = Flippant</td>
</tr>
</tbody>
</table>

Group 1:
- What do you do for a living? (I)
- Can I sit with you so I won’t get hit on? (F)
- Hey beautiful, how are you today, would you like to go out for a cup of coffee? (D)

Group 2:
- Is anyone sitting here? (I)
- If you were a triangle you’d be acute one. (F)
- Can I buy you a drink? (D)

Group 3:
- Don’t I know you from somewhere? (I)
- Do you know how much a polar bear weighs? Enough to break the ice, Hi I’m [insert name here]. (F)
- I think I follow you on [social media platform]. We should get to know each other. (D)

Group 4:
- Hey I’m new around here, where’s your favorite place? (I)
- You breathe oxygen too? We have so much in common. (F)
- I just have to tell you, you have amazing eyes. (D)

Group 5:
- Are you good at _____? I need a study partner and I think we could help each other out. (I)
- Is your name Ariel? Because I think we mermaid for each other. (F)
- I saw you and I just had to come talk to you. (D)
Find your career.

Eight graduate degree programs and four certificates in Educational Psychology

PhD in Educational Psychology
Engage in the science of learning. Prepare for a career where you can use your knowledge of human learning and development to help shape the school environment and public policy. Core program areas include learning, motivation, and research design.

MS or MA in Educational Psychology
Broaden your ability to apply psychological principles to a variety of professional contexts or prepare for your future doctorate in social science.

MS in Quantitative Psychology
Do you like numbers, statistics, and social science? Prepare for a career in research, assessment, and data analysis. Develop proficiency in advanced statistical techniques, measurement theory, and data analytics.

PhD in School Psychology (five-year program)
Prepare for a career as a licensed psychologist. Gain competencies in health service psychology to work in schools, private practice, or hospital settings. Accredited by the American Psychological Association (APA)** and approved by the National Association of School Psychologists (NASP). Scientist-practitioner model with advocacy elements. Specializations available.

MA/EdS in School Psychology (three-year program)
Be immersed in community engaged, real-world field experiences and intervention opportunities in our scientist-practitioner-advocate program. Leads to licensure as a school psychologist. Approved by NASP and the National Council for Accreditation of Teacher Education (NCATE).

MA in School Counseling (two-year program)
Be a leader and advocate for educational equity for all students in PK–12 schools. Leads to licensure as a school counselor. Accredited by the Council for Accreditation of Counseling and Related Educational Programs (CACREP) and nationally recognized by The Education Trust as a Transforming School Counseling program.

Certificates
High Ability/Gifted Studies,* Human Development and Learning,* Identity and Leadership Development for Counselors,* Neuropsychology*

Graduate assistantships and tuition waivers are available.

bsu.edu/edpsy

*Online programs are available.

**Questions related to the PhD in school psychology’s accreditation status should be directed to the Office of Program Consultation and Accreditation, American Psychological Association, 750 First St. NE, Washington, D.C. 20002; (202) 336-5979; apaaccred@apa.org; or apa.org/ed/accreditation.
"MY JOB IS NOT JUST TO TEACH, BUT ALSO TO HELP STUDENTS SEE THEIR INNER STRENGTHS."

At the College of Clinical Psychology at Argosy University, we believe in a practitioner-scholar model of training. Our programs offer a rigorous curriculum grounded in theory and research, while also offering real-world experience. What’s more, all our PsyD programs have received accreditation from the American Psychological Association (APA), certifying that they meet the industry’s standards.

Learn more at clinical.argosy.edu/psichi

Arizona School of Professional Psychology at Argosy University
American School of Professional Psychology at Argosy University | Southern California
American School of Professional Psychology at Argosy University | San Francisco Bay Area
Florida School of Professional Psychology at Argosy University
Georgia School of Professional Psychology at Argosy University
Hawaii School of Professional Psychology at Argosy University
Illinois School of Professional Psychology at Argosy University | Chicago
Illinois School of Professional Psychology at Argosy University | Schaumburg
Minnesota School of Professional Psychology at Argosy University
American School of Professional Psychology at Argosy University | Northern Virginia

DR. NAHID AZIZ
Associate Professor at the American School of Professional Psychology at Argosy University | Northern Virginia
Dr. Aziz is committed to mentorship, training, and addressing issues relevant to the ethnic and racial diversity.

*The Doctor of Psychology in Clinical Psychology Program at Argosy University Atlanta, Chicago, Hawaii, Orange County, Phoenix, San Francisco Bay Area, Schaumburg, Tampa, Twin Cities and Northern Virginia is accredited by the Commission on Accreditation of the American Psychological Association (APA). Questions related to the program’s accredited status should be directed to the Commission on Accreditation, Office of Program Consultation and Accreditation, American Psychological Association, 750 First Street, NE, Washington DC 20002. Phone: (202) 336-5917. E-mail: apacorp@apa.org / Web: www.apa.org/ed/accreditation

Argosy University is accredited by the WASC Senior College and University Commission (860 Atlantic Ave., Suite 100, San Rafael, CA 94901, wasc.org). Programs, credential levels, technology, and scheduling options are subject to change. Not all online programs are available to residents of all U.S. states. Administrative office: Argosy University, 601 South Lewis Street, Orange, CA 92866 ©2018 Argosy University. All rights reserved. Our email address is materialsreview@argosy.edu
See and Share *Psi Chi Journal’s First-Ever Special Issue*

www.psichi.org/page/232JNSpecialIssue18

Learn about “replication crisis” and how earning Open Science Badges can reinforce your research practices. Led by Special Invited Editor Dr. Steven V. Rouse, this unique, free issue features a variety of articles awarded with badges for sharing Open Data, Open Materials, Preregistering their research, and conducting Replication studies.

Authors of all future *Psi Chi Journal* articles are encouraged to participate in our ongoing badges program, which was created by members of the Open Science Collaboration. Any badges received will be prominently displayed on the first page of published *Psi Chi Journal* articles, as shown throughout the new special issue.

Learn more about the badges at **www.psichi.org/page/journal_Badges**

View *Psi Chi Journal* submission guidelines at **www.psichi.org/?page=JN_Submissions**

Special Issue Call for Abstracts:

Education, Research, and Practice for a Diverse World

Today, consider submitting an abstract for a potential empirical manuscript to be published in *Psi Chi Journal’s* next special issue. This special issue welcomes articles that examine the effects and advancement of diversity and inclusion in classrooms, educational materials, and technology.

- Abstracts are due **September 15**.
- Selected manuscripts are due **October 15**.
- Publication for the issue is anticipated for **Summer 2019**.

A vast amount of psychological research has indicated the importance of embracing diversity-affirming stances with regard to racial and ethnic diversity, sexual and gender diversity, religious diversity, disability status, SES and social class, refugee and immigrant status, among many others. This special issue is in direct support of the new 2018–19 Psi Chi theme of “Leveraging Technology to Advance Diversity and Inclusion.”

We look forward to reviewing your abstracts! Submit your abstracts to Debi.Brannan@psichi.org.
PSI CHI Advertising Contract: Psi Chi Journal

CLIENT INFORMATION

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertiser</td>
<td></td>
</tr>
<tr>
<td>Contact Name</td>
<td></td>
</tr>
<tr>
<td>Address 1 Street or P.O. Box</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
</tr>
<tr>
<td>Phone (daytime)</td>
<td>E-mail</td>
</tr>
<tr>
<td>Submitted by</td>
<td></td>
</tr>
<tr>
<td>Authorized Signature</td>
<td></td>
</tr>
</tbody>
</table>

DIGITAL PUBLICATION

<table>
<thead>
<tr>
<th>Issue</th>
<th>Deadline</th>
<th>Online Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Jan 31</td>
<td>Feb 22</td>
</tr>
<tr>
<td>Summer</td>
<td>April 15</td>
<td>May 17</td>
</tr>
<tr>
<td>Fall</td>
<td>Sept 3</td>
<td>Sept 28</td>
</tr>
<tr>
<td>Winter</td>
<td>Nov 15</td>
<td>Dec 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size/Dimensions</th>
<th>Cost</th>
<th>Art Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full page (no bleed)</td>
<td>$400</td>
<td>6 1/8" x 9 1/8" Black & White only</td>
</tr>
<tr>
<td>Half page (horizontal)</td>
<td>$275</td>
<td>6 1/8" x 4 1/8" Black & White only</td>
</tr>
</tbody>
</table>

OUR JOURNAL

Advertising in *Psi Chi Journal* allows you to connect with established psychology researchers and mentors, as well as undergraduates and graduate students striving to build a career in one of the many areas of research. People regularly visit our journal online to:

- view current and past issues,
- submit their research for publication,
- learn about reviewing for *Psi Chi Journal*, and
- share invited editorials as teaching tools in the classroom.

All issues and advertisements are permanently free online to both members and nonmembers alike. During the 2017–18 fiscal year, pschi.org received almost 1.5 million page views, ensuring that high-achieving students and professionals will see your content for years to come.

To further enhance the visibility of our journal, latest issues and calls for submissions are regularly featured in *Psi Chi Digest* e-mails (177,000+ subscribers) and on our four social media platforms:

- Facebook (22,300+ followers)
- Twitter (4,700+ followers)
- LinkedIn (10,200+ followers)
- Instagram (1,000+ followers)

Articles are also indexed in PsycINFO, EBSCO, and Crossref databases—essential tools that researchers use to search for millions of psychology-related articles. This makes *Psi Chi Journal* a key place to communicate your message with our Professional Organization’s three quarters of a million lifetime members and far beyond.

AD SPECIFICATIONS

Digital format: PDF, EPS, and TIFF
Resolution: 300 dpi
Black & white ads (no RGB or 4-color process)
PDF settings: Press quality, embed all fonts

DEADLINE/BILLING

Payment due upon receipt of invoice.

CONTACT

Submit contact by e-mail to
Susan Iles
Advertising Sales
Psi Chi Central Office
E-mail: susan.iles@pschi.org
Phone: 423-771-9964

All advertisements must be scholarly and professional in nature, and Psi Chi reserves the right to reject (or cancel) any ads that are not in the best interest of the Organization or consistent with the Society’s mission.

Copyright 2018 by Psi Chi, The International Honor Society in Psychology (Vol. 23, No. 3/ISSN 2325-7342)

* Psi Chi is the International Honor Society in Psychology, supporting the professional development of its members and promoting the field of psychology.*
Publish Your Research in *Psi Chi Journal*

Undergraduate, graduate, and faculty submissions are welcome year round. Only the first author is required to be a Psi Chi member. All submissions are free. Reasons to submit include

- a unique, doctoral-level, peer-review process
- indexing in PsycINFO, EBSCO, and Crossref databases
- free access of all articles at psichi.org
- our efficient online submissions portal

View Submission Guidelines and submit your research at www.psichi.org/?page=JN_Submissions

Become a Journal Reviewer

Doctoral-level faculty in psychology and related fields who are passionate about educating others on conducting and reporting quality empirical research are invited to become reviewers for *Psi Chi Journal*. Our editorial team is uniquely dedicated to mentorship and promoting professional development of our authors—Please join us!

To become a reviewer, visit www.psichi.org/page/JN_BecomeAReviewer

Resources for Student Research

Looking for solid examples of student manuscripts and educational editorials about conducting psychological research? Download as many free articles to share in your classrooms as you would like.

Search past issues, or articles by subject area or author at www.psichi.org/?journal_past

Add Our Journal to Your Library

Ask your librarian to store *Psi Chi Journal* issues in a database at your local institution. Librarians may also e-mail to request notifications when new issues are released.

Contact PsiChiJournal@psichi.org for more information.

Register an account: http://pcj.msubmit.net/cgi-bin/main.plex