Specifying Sustainable Concrete

Lionel Lemay, PE, SE, LEED AP Sr. VP, Sustainable Development

How Do You Measure Sustainability?

- Best Approach: Life Cycle Assessment
- LCA is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service.

Pros and Cons of LCA

- Pros
 - Pinpoints where process improvements can yield environmental benefits
 - Identifies trade offs
 - Good communication tool
- Cons
 - Extremely complex and expensive
 - Lack/unreliable Life Cycle Inventory data
 - Prioritization of impacts is subjective

Should we Conduct LCA for Every Product/Project?

- Probably Not Realistic
- Rating Systems
 - Surrogates for LCA
 - Identify impacts
 - Prioritize impacts
 - Identify trade offs
 - Communication tool

Rating Systems

Incorporate partial LCA in some cases

Rating System for Concrete?

Continuously improve product

Continuously improve process

Objectives

- Minimize Energy Use
- Reduce Emissions
- Conserve Water
- Minimize Waste
- Increase Recycled Content
- Social and Human Health Issues

Life Cycle Perspective

Targets Per Unit of Concrete Produced*

- Embodied energy:
 - □ 20% reduction by 2020
 - □ 30% reduction by 2030
- Carbon footprint:
 - □ 20% reduction by 2020
 - □ 30% reduction by 2030
- Potable water:
 - □ 10% reduction by 2020
 - □ 20% reduction by 2030

- Waste:
 - □ 30% reduction by 2020
 - □ 50% reduction by 2030
- Recycled content:
 - 200% increase by 2020
 - □ 400% increase by 2030

*from 2007 Levels

Performance Based Specifications

- P2P Initiative (Prescriptive to Performance Specifications for Concrete)
- Removes limits on materials
- Allows producers to meet performance requirements
- Minimize environmental impact

INITIATIVE

www.nrmca.org/P2P

Concrete Plant Certification

- Ensures quality concrete production
- Quality control leads to lower environmental footprint
 - Optimize mix designs
 - Reduce waste

Green-Star Certification

- Utilizes an EMS
- Plan-Do-Check-Act model
- Easy to use templates to develop an EMS

Sustainable Concrete Plant Certification

- Guidance for continuous improvement
- Assessment tool for producers
- Rating system for concrete plants
- 3rd Party Audited

Sustainability Credits

Category	Credits
Prerequisites	0
Material Acquisition	16
Production	52
Delivery and Construction	13
Product Use	6
Material Reuse and Recycling	8
Additional Sustainable Strategies	5
Total Points	100

Impact Categories and Credits

Embodied Energy

Carbon Footprint

Water Use

Waste

Recycled Content

Social Concerns and Human Health

Sustainability Levels

- Platinum
 - □ 90-100 point
- Gold
 - □ 70-89 points
- Silver
 - □ 50-69 points
- Bronze
 - □ 30-49 points

Metrics

- Simple Equations
- Worksheets
- Carbon Calculators (LCA tool)

Evaluation Period

- All measurements for 12 month period
- Evaluation is repeated every 2 years

Prerequisites

- Comply with national and local regulations
- Environmental Management System (EMS)
 - NRMCA Green-Star
 - □ ISO 14001
- Energy Audit
- Site Plan (with environmental strategies)

Credit 1.3: Material Transportation Analysis

Plant CO2e 5% or more below U.S. national baseline	1 point
Plant CO2e 10% or more below U.S. national baseline	+1 point
Plant CO2e 15% or more below U.S. national baseline	+1 point
Plant CO2e 20% or more below U.S. national baseline	+1 point

Documentation

Copy of the Materials Transportation Calculator with calculated results

Credit 2.1: Process Dust Emissions Control

Complete *Emissions Calculator* to determine weighted process emission controls

≥ 50% weighted process emission controls	1 point
≥ 75% weighted process emission controls	+1 point
≥ 90% weighted process emission controls	+1 point

Documentation

Completed "Dry Batch Process Emissions" or "Central Mix Process Emissions" worksheet from the *Emissions Calculator*.

Credit 2.4: Reduction of Fresh Water Use in Batching

Batching fresh water use percentage below national baseline of 25 gal/cy (124 l/m³).

batching fresh water use (% below baseline) =
$$\frac{25 - plant \text{ use } \left(\frac{gal}{cy}\right)}{25} \times 100$$

Water in batching 10% or more below U.S. national baseline	1 point
Water in batching 20% or more below U.S. national baseline	+1 point
Water in batching 30% or more below U.S. national baseline	+1 point

Documentation

Letter from the company's accountant or corporate officer stating total amount of municipal fresh water purchases and onsite well water used for batching purposes

Credit 2.10: Reduced Carbon Footprint

Use CO2 Calculator to calculate the plant CO2 footprint

$$CO2e (\% below baseline) = \frac{634 - plant CO2e \left(\frac{lb CO2e}{cy}\right)}{634} \times 100$$

CO2e 5% or more below U.S. baseline	1 point
CO2e 10% or more below U.S. baseline	+1 point
CO2e 15% or more below U.S. baseline	+1 point
CO2e 20% or more below U.S. baseline	+1 point
CO2e 25% or more below U.S. baseline	+1 point
CO2e 30% or more below U.S. baseline	+1 point

Documentation

Submit a copy of the CO2 Calculator's output page.

Carbon Calculator

- Input Data
 - Material Purchase Data
 - Material Transportation Data
 - Plant Energy Data
 - Fleet Energy Data
- Results
 - Plant Annual Carbon Footprint (total and per cy)
 - Plant Annual Energy Use (total and per cy)

Auditor: Independent Third Party

- Not an employee of NRMCA
- Nor an employee of the company they are auditing
- Nor an employee of a concrete producer, equipment supplier or product supplier
- Auditors may consult for companies who are in the process of submitting a plant for Certification
 - But cannot Audit a plant for which they provided consulting services related to the Certification Application being audited

What's Coming?

PCR Committee (being led by University of Washington) **MEMBERS AFFILIATION** Alicia Daniels Uhlig **GGLO** Architecture Jeff Davis Central Concrete Francesca DesMarais Architecture 2030 (observer) Chris Erickson Climate Earth Dean Frank Precast/Pre-stressed Concrete Institute Heather Gadonniex **UL** Environment Won Lee Forell/Elsesser Lionel Lemay National Ready Mix Concrete Association Greg McKinnon Stoneway Concrete Helena Meryman Consultant John Ochsendorf Carlo Strazza University of Genoa Mark Webster Simpson Gumpertz & Heger www.carbonleadershipforum.org

Specifying Sustainable Concrete

- Specify strength at age (more than 28 days)
- Specify ACI 318 Exposure Class
- No prescriptive requirements, such as:
 - Minimum cement content
 - Maximum w/cm
 - Maximum SCM content
- NRMCA Concrete Plant Certification (Quality)
- NRMCA Green-Star Plant Certification (EMS)

Other Potential Options

 NRMCA Sustainable Concrete Plant Certification (Bronze or higher)

- OR -

 Plant meets intent of credit 2.10 in the NRMCA Sustainable Concrete Plant Guidelines (1 point or higher)

For Future (1 year +)

- Concrete supplier shall submit an Environmental Product Declaration
 - Plant specific EPD is preferred
 - Industry wide EPD (where company is listed) is acceptable

For the Future (5 years +)

- Concrete supplier shall demonstrate through the use of EPD that concrete mixture proposed for the project has lower carbon footprint* than baselines established by NRMCA.
- * And/or other environmental impact

