Status of Aquatic and Terrestrial Plant Methods in Canada

Contact: Lisa.Taylor@ec.gc.ca
Why do we need standardized biological test methods?

• scientifically defensible
• minimize variation
• comparable data (e.g., national consistency, spatial and temporal trend analysis)
• legally enforceable data
• decision-oriented
• international acceptability
Test Methods Available

• Published 23 standardized biological test method documents for conducting toxicological testing on toxic substances and complex mixtures in water, sediment and soil
• Published 7 national guidance documents to provide specific direction and recommendations on the interpretation and application of aquatic and terrestrial toxicology data
• All methods are used in Federal/Provincial regulations & guidelines
Use in Canada

• Chemical testing
 – Chemical Management Plan

• Environmental samples
 – Assessments of contaminated land
 – Remediation
 – Environmental Effects Monitoring
Test methods are designed to support specific programs & industrial sectors

WATER

• Direct regulatory application
 – Metal Mining Effluent Regulations under the federal Fisheries Act
 – Pulp & Paper Effluent Regulations under the federal Fisheries Act
 – Derivation of water quality guidelines
 – Environmental assessments for chemicals
Test methods are designed to support specific programs & industrial sectors

SOIL

• Direct regulatory application
 – Derivation of soil quality guidelines
 – Canada-wide Standards (e.g. Petroleum Hydrocarbons in Soils)
 – Site-specific clean-up of contaminated lands (e.g. Alberta Tier 2 Eco-contact Derivation Protocol)
Agronomic Plants (EPS 1/RM/45)

• Published in 2005
• Test for measuring emergence and growth of terrestrial plants exposed to contaminants in soil
 – 12 species
 ▪ **Alfalfa** (*Medicago sativa* L.)
 ▪ **Barley** (*Hordeum vulgare* L.)
 ▪ **Blue grama grass** (*Bouteloua gracilis* (HBK) Lag. ex Steud.)
 ▪ **Cucumber** (*Cucumis sativus* L.)
 ▪ **Durum wheat** (*Triticum durum* (Desf.)
 ▪ **Lettuce** (*Lactuca sativa* L.)
 ▪ **Northern wheatgrass** (*Elymus lanceolatus* (Scribn. & J.G. Sm.) Gould)
 ▪ **Radish** (*Raphanus sativus* L.)
 ▪ **Red clover** (*Trifolium pratense* L.)
 ▪ **Red fescue** (*Festuca rubra* L.)
 ▪ **Tomato** (*Lycopersicon esculentum* Mill.)
NEW Boreal Plant (EPS 1/RM/56)

• Completed and available Aug 2013

- Trembling aspen (*Populus tremuloides* Michx.)
- Bluejoint reedgrass [*Calamagrostis canadensis* (Michx.) P. Beauv.]
- Canada Goldenrod (*Solidago canadensis* L.)
- Paper birch (*Betula papyrifera* Marsh.)
- Jack pine (*Pinus banksiana* Lamb.)
- White Spruce [*Picea glauca* (Moench) Voss]
- Black spruce [*Picea mariana* (Mill.) Britton, Sterns & Poggenb.]
NEW Boreal Plant (EPS 1/RM/56)
NEW Boreal Plant (EPS 1/RM/56)

- Provisions for soil collected from forested regions to account for horizon development and differentiation
 - Further guidance in **EPS 1/RM/53** (sampling guidance document)
NEW Wetland Plant Method

- **Future** test method using wetland species for measuring the effect of contaminants in Canadian boreal and northern wetland regions
 - Research supported by Environment Canada, Natural Resources Canada, and conducted by Saskatchewan Research Council (Mary Moody)
 - Soil/substrate and water collected from reference and contaminated sites across northern and central Alberta and Saskatchewan
 - Bog, fen and marsh

![Map showing 60% wetland coverage](image)
NEW Wetland Plant Method

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marsh</td>
<td>Calamagrostis canadensis (bluejoint reedgrass)</td>
</tr>
<tr>
<td></td>
<td>Typha latifolia (cattail)</td>
</tr>
<tr>
<td></td>
<td>Salix bebbiana (Bebb's willow)</td>
</tr>
<tr>
<td></td>
<td>Carex aquatilis (aquatic sedge)</td>
</tr>
<tr>
<td></td>
<td>Picea mariana (black spruce)</td>
</tr>
<tr>
<td>Fen</td>
<td>Carex aquatilis (aquatic sedge)</td>
</tr>
<tr>
<td></td>
<td>Larix laricina (tamarack)</td>
</tr>
<tr>
<td></td>
<td>Myrica gale (sweet gale)</td>
</tr>
<tr>
<td></td>
<td>Calamagrostis canadensis (bluejoint reedgrass)</td>
</tr>
<tr>
<td></td>
<td>Picea mariana (black spruce)</td>
</tr>
<tr>
<td>Bog</td>
<td>Picea mariana (black spruce)</td>
</tr>
<tr>
<td></td>
<td>Vaccinium vitis-idaea (bog cranberry)</td>
</tr>
</tbody>
</table>
NEW Wetland Plant Method

• Test methods have been validated on reference and contaminated site samples from marsh, fen and bog sites
 – Test designs have successfully included using fresh and dried soils
 – Differences in tolerance to contaminants (e.g., salts, PHCs, metals) among species
 – Test species are ecologically relevant to Canadian boreal regions

• Current research includes
 – Determining tolerance of test species to varying moisture levels
 – Continued assessment of sensitivity to contaminated samples (e.g., fen affected by crude oil spill)
 – Testing of new artificial mixtures, suitable to each habitat (e.g., varying the level of peat from 6 to 95% and pH from neutral to acidic)
NEW Wetland Plant Method

- Future method research will include:
 - Tests of additional reference and contaminated sites including north of 60 and oil sands sites
 - Assessing differences among seed lots
 - Assessing the sensitivity to a standard reference toxicant (e.g., boric acid)
 - Determining the pH tolerance range of the test species
Need more information?

Dr. Juliska Princz,
Manager,
Soil Toxicology Laboratory

Juliska.Princz@ec.gc.ca
Or
613-990-9544