

Global Plant Advisory Group

Open Meeting Tue 16:15 Issues...

Updated May 2016

Issues with plant tests in the open literature

Heino Christl

Problems:

- No Dose-response design
- Extrapolation (dose-resp, but ERx outside of range)
- Selection of Effect level (ER₁₀, ER₂₀, ER₂₅ ER₅₀)
- SSDs and "Greater than-values"

Problem: No Dose-response design, ERx wanted, but only control + one dose tested

No Dose-response design

Problem:

ERx wanted, but only control + one dose (20 g/ha) tested

Extrapolation

Problem:

Dose-response design, but the ERx is outside the range tested

Problem:

Tested treatment levels do not cover desired endpoint Wanted: ER₂₅ Tested levels 0.02, 0.05, 0.1 * FAR ER25 of different species range

between 0.02 and 4.0 FAR

Extrapolation

Reproductive endpoint 0.08 FAR

Extrapolation

Vegetative endpoint: 4 FAR.

Vegetative endpoints with sufficient test rates...

Vegetative endpoints with sufficient test rates...

Extrapolation

...but these vegetative extrapolations were reported.

After spotting this, we checked with one of the Authors, who confirmed that these were indeed mathematical extrapolations, not just a typo.

What would you do with these values?

We decided to include them, but only as greater-than values... *extrapolations ≤ 2 considered to be acceptable*

Selection of Effect level (ER₁₀, ER₂₀, ER₂₅...)

Problem:

Reliability of endpoints varies with effect level Central estimates always more reliable than estimates at the tails of a distribution

Selection of Effect level (ER₁₀, ER₂₀, ER₂₅...)

Selection of Effect level (ER₁₀, ER₂₀, ER₂₅...)

Problem:

Reliability of endpoints varies with effect level

Endpoint	Confidence interval (95%)	Factor
ER ₅₀	10.4 - 31.8	2.9 - fold
ER ₂₅	2.2 – 12.1	5.4 - fold
ER ₂₀	1.4 - 10.2	7.3 - fold
ER ₁₀	0.34 - 6.6	19.4 - fold
ER ₀₅	< ? - 3.5	> ?? - fold

Use ER₅₀ (with assessment factor), or ER₂₅ & AF (also this would make US-EPA data available), but any lower ERx would be unreasonably uncertain

Problem:

Endpoints with ">" or "<"

5 options to handle data:

- a) Exclude the species with censored endpoints
- b) Include censored data, ignoring the ">"
- c) Include censored data with a correction factore.g. f = 2 (UBA 2014???)
- d) Consider censored data for n, but discard numeric values (HC 2008)
- e) Consider censored data with a MLE-method (bootstrapping, e.g. MOSAIC script 2014)

Data: (AMRAP Case C)

Input toxicity data

Data no.	Toxicity data	Label	•		
1	1.5	Lemna gibba		1.5	Lemna gibba
2	1.7	Lagarosiphon major		1.7	Lagarosiphon major
3	2	Myriophyllum heterophyllu		2	Myriophyllum heterophyllur
4	3	Ceratophyllum demersum		3	Ceratophyllum demersum
5	3.2	Potamogeton pectinatus		3.2	Potamogeton pectinatus
6	3.4	Mentha aquatica		>3.4	Mentha aquatica
7	3.8	Valisneria americana		>3.8	Valisneria americana
8	5	Elodea canadensis		>5.0	Elodea canadensis
9	5.1	Ranunculus lingula		>5.1	Ranunculus lingula
10	5.3	Glyceria maxima		>5.3	Glyceria maxima

a) Exclude the species

(no good idea)

b) Include censored data, ignoring the ">"

d) Consider data for n, but discard numeric value

? Fundamentally not possible with ETX 2.0

e) Consider censored data with maximum likelihood

MOSAIC-Online version and R-script (University Lyon) using two custom libraries (fitdistrplus), (actuar)

Kon Kam King et al. (2014) MOSAIC_SSD: A new Web tool for SSD -Environ Toxicol Chem 33 (9) pp. 2133–2139

Results:

Option	HC ₀₅ (50% prob)	HC ₅₀ (50% prob)
a) (5 species)	1.18	2.14
b) (10 species <> as values)	1.43	3.08
c) (10 species, <> with correction factor, e.g. f = 2	1.15 (ETX) 1.44 (LSQ)	4.40 (ETX) 4.35 (LSQ)
d) (10 species, 5 used for fitting)	1.25	3.49
e) (MLE bootstrap; 10 spec, 5 censored) (MOSAIC)	1.24	4.15

Recommendation?

- a) and b): Ignore censored data, or include, ignoring < >: most commonly used, (simplest, but least satisfying)
- c): Consider censored data with a correction factor (f = 2) also simplistic, but not generally accepted (UBA?)
- d): Consider censored data for n, but discard numeric values (relatively straightforward, no tool available yet)
- e): Consider via MLE-method, censored data affect distribution (MOSAIC, bootstrap), (complex, still not perfect: Treatment of less-than values problematic; HC₅ may get unreasonably low)

Thank you!