AMEG: The New SETAC Advisory Group in Aquatic Macrophyte Ecotoxicology

Silvia Mohr, Federal Environment Agency, DE

G. Arts, Alterra WUR, NL
J. Davies, Syngenta, UK
M. Dobbs, Bayer Cropscience, US
P. Ebke, Mesocosm GmbH, DE
M. Hanson, University of Manitoba, CA
U. Hommen, Fraunhofer IME, DE
K. Knauer, BLW, CH
L. Maltby, University of Sheffield, UK
S. Loutseti, DuPont, GR
A. Poovey, USACE, US
V. Poulsen, AFSSA, FR
Why macrophytes?

Key species in the aquatic environment:

- Production of organic matter and oxygen,
- control of nutrient cycling and nutrient availability in the water layer,
- sediment stabilization,
- food resource as well as
- habitat and shelter for aquatic fauna including fish

A healthy and diverse macrophyte community increases species diversity and water quality
Why AMEG?

- Born of the international workshop on aquatic macrophytes in risk assessment – **AMRAP** (Netherlands, 2008)

Consensus of AMRAP workshop members (Academia, government and industry):

- **Current Risk Assessment (RA) for pesticides does not assure adequate protection for aquatic macrophytes concerning some pesticides**
Macrophytes in risk assessment

General RA procedure for plant production products:

Tier 1: Standardized laboratory tests (algae, water flea, fish)

- An additional macrophyte test is required if a herbicide is tested

Chronic Test (EC No.1107/2009)

Duckweed Lemna spp.

- rooted, free floating, monocot
- fast growth and high potential for recovery

Lemna test may not be sensitive for some herbicides that adsorb to surfaces or have a certain mode of action
Example Irgarol

Pond Mesocosm study
- herbicidal biocide used in antifouling paints
- highly effective photosystem II inhibitor

Environmental concentrations:
- up to 4.1 µg/L (seawater)

EC-50
Myriophyllum verticillatum (mesocosm): 0.21 µg/L
Lemna minor (laboratory): 8.7 µg/L
Aims of AMEG

- Development of guidance and tools for aquatic macrophyte risk assessment
- Communication and education
- Function as a discussion platform: webpage, SETAC meetings
- Build up of a world wide network of scientists from University, government and industry

AMEG needs you!
Current AMEG working groups

- Proposal for a modified aquatic macrophyte Tier 1 risk assessment scheme for plant protection products
- Protocol for a laboratory toxicity test with *Myriophyllum* spp. to be ring-tested in 2010
- Collation of a database of macrophyte species and test methods based on current experiences
- Development of criteria and guidance on species and endpoints and their use in Species Sensitivity Distributions (SSDs)
Test guidance for *Myriophyllum*

Macrophytes: *M. spicatum* or *M. aquaticum*

Medium: Smart and Barko

Sediment: artificial sediment (OECD 219)
addition of nutrients (N and P)

Light: 100-120 µE·m⁻²·s⁻¹

Test duration: 7-14 days

Temperature: 20 ± 2°C

Endpoints: Biomass, length, fluorescence

- Ring testing will start soon!
- Test substance: 3,5-Dichlorphenol (3,5-DCP)

You can still contribute!
First pre-test results

Myriophyllum spicatum

Data from BASF laboratory
by Johanna Kubitza and Peter Dohmen

Data from UBA Laboratory
by Andreas Hünken and Carola Kussatz

- Good growth, little variation
Species sensitivity distributions (SSD)

- Development of SSDs for estimating hazardous concentrations using the EC-50 of several species for one substance
- HC5: concentration for which most plants should be safe

Open questions:
- Which endpoints, which plants (monocots, dicots, submerged, emerse) should be integrated?
- Should only be the most sensitive endpoints included?

Data collection:
- 2000 endpoints for 54 compounds, 55 freshwater macrophytes
- EC-50 variation within species is greater than that between species

More published data are needed!
Emerging directions

- **Management of invasive macrophytes**
 - In context of climate change
 - What consequences for indigenous species?

- **Tropical effect assessment**
 - Transfer of technologies and evaluation criteria to tropical regions possible?
 - Which indigenous species are representative for tropical ecosystems?

- **Restoration and bioremediation**
 - Green liver concept

Mohr et al.: AMEG: The New SETAC Advisory Group in Aquatic Macrophytes Ecotoxicology
Green liver concept

Plants exhibit metabolisation of toxic compounds by deposing toxic substances into cell wall components

- Use of bioaccumulation potential of macrophytes for reduction of nutrients, heavy metals or algal toxins from waste or polluted surface waters

Nimptsch et al. 2008 (EST):

- Pilot pond system at Hefei Water works, Lake Chao, China
- Testing algal toxin elimination efficiency by different macrophyte species

Photo kindly provided by S. Pflugmacher
Hefei pilot pond system - results

Before Hydrilla sp. - Myriophyllum sp. - Phragmites sp. After

- Up to 84% Reduction of the algal toxin microcystin depending on plant density from raw lake water (toxin concentration below WHO guideline for drinking water)
- More research and technical realization is needed
How to contribute?

- You can become actively involved in the various working groups
- Become a member via your SETAC profile
- Next AMEG Meeting at SETAC Europe 2010 in Seville, Spain
- AMEG publication in ESPR journal

http://www.setac.org/node/11
Thanks!

For your attention

http://www.setac.org/node/11