Weapon Simulation as a Service for the entire tactical cycle

2024-SIW-Presentation-005

Arno Gerretsen, Royal Netherlands Aerospace Centre (NLR)
Nico Zink, Royal Netherlands Aerospace Centre (NLR)
arno.gerretsen@nlr.nl
Outline

• Needs and benefits
• Requirements
• Technical implementation
• Experiences from first usage
• Future developments
• Interface standardization
Why develop a new weapon server?

• NLR has a fighter aircraft research simulator with an existing weapon server, but this server does not allow us to:
 ▪ Tune the weapon parameters or switch to agreed weapon parameters for an exercise
 ▪ Integrate new weapon models ourselves

• Correlated pre-launch weapon information
 ▪ Is crucial for pilot to tactically deploy a weapon
 ▪ Lack of correlation between pre-launch information and weapon flyout hinders pilot in using proper tactics
 ▪ Weapon server should also provide pre-launch information
Benefits of using a weapon server

• **Modularization**
 ▪ Add or replace weapon model without impacting the entire simulation
 ▪ Easier to integrate same weapon into multiple simulations
 ▪ Dedicated team can develop weapon server

• **Fair-fight in distributed simulation**
 ▪ All participants use the same weapon model
 ▪ Allows consistent tactics within the exercise
Requirements

- **Functional**
 - Simulate weapon flyout in real-time
 - Calculate pre-launch and post-launch information fast enough for simulation client
 - Interact with simulation environment via DIS
 - Able to handle multiple flyouts and information requests in parallel
 - Able to serve multiple simulation clients

- **Extendibility**
 - Minimal development effort to integrate new weapons
 - Support multiple protocols for communication with clients

- **Usability**
 - Configure weapons and switch weapon parameters without development effort
 - User friendly to start and monitor the application
Technical architecture

Client Request / Response

Services

- Flyout simulation
- DLZ calculation
- Timing calculation

Simulation environment

EntityState
- Fire
- Detonation
- ...

Frontend

HTTPS

DIS

DIS

DIS

WeaponServer library

WeaponServer library

WeaponServer library
Calculation services

- **Flyout service**
 - Real-time (50 Hz) flyout of weapon model
 - High precision timer
 - Target input from simulation environment
 - Output to simulation environment
Calculation services

- **DLZ service**
 - Multiple weapon flyouts needed to calculate all DLZ parameters
 - DLZ information is returned to requestor once all calculations are done
 - *Design update rate 2 Hz*
 - Only one request per client processed at a time
Calculation services

- **Timings service**
 - Single weapon flyout to calculate all parameters
 - Timing information is returned to requestor once calculation is done
 - Design update rate 2 Hz
 - Multiple weapons in flight possible for each entity
Frontend

• End user can monitor the status of the weapon server
 ▪ System and simulation environment connection status
 ▪ Active flyouts and calculations
 ▪ Log events

• Accessible via web interface
Lessons learned: Usage in simulation exercise

Weapon server was first used as part of a fighter aircraft simulator in an LVC exercise

- **Easy to switch performance parameters of weapons**
 - Weapon parameters were replaced by parameters agreed within exercise

- **Easy to add new weapon model**
 - GPS-guided bomb was added for this exercise

- **Short development timescale and lack of representative test hardware caused performance issues**
Future extensions weapon server

- **Support additional weapon types**
 - Laser seeking weapons
 - Radiation seeking weapons
 - Network enabled weapons

- **Implement A/G pre-launch information algorithm**

- **Support DIS 7**

- **Support multiple protocols for requests/responses**
 - E.g. network package, web API, Universal Armament Interface (UAI)

- **More generic approach to include weapon models**
 - E.g. Functional Mockup Interfaces/Units (FMI/FMU)
Interface standardization

- Interface standardization is needed to be able switch weapon server instance easily
 - Common weapon server within a distributed simulation exercise
 - Weapon service provided by e.g. weapon manufacturer

- Standardize data model for requests and responses
 - Leave communication protocol an implementation choice
 - Replace sensitive parameter by generic parameters

- Other MSaaS services have similar standardization needs
 - Single standardization activity for common MSaaS services?
Interface standardization

- **Weapon launch request**
 - A/A missile flyout request
 - Shooter position
 - Shooter attitude
 - Target data
 - Pilot selectable missile settings
 - Flyout confirmation
 - Weapon ID
 - Target position update
 - Weapon ID
 - Target position
- **Pre/post-launch information request**
- **Pre/post-launch information response**
- **Weapon launch confirmation**
- **Weapon updates**

<table>
<thead>
<tr>
<th>Pre-launch DLZ request</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Shooter state</td>
</tr>
<tr>
<td>- Relative target state</td>
</tr>
<tr>
<td>- Weapon type</td>
</tr>
<tr>
<td>- Pilot selectable</td>
</tr>
<tr>
<td>missile settings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAR response</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Attach zone ranges</td>
</tr>
<tr>
<td>- Attack zone polygon</td>
</tr>
<tr>
<td>- Optimal steering information</td>
</tr>
<tr>
<td>- Weapon timings</td>
</tr>
</tbody>
</table>
Conclusions

• **Weapon simulation as a service has many benefits**
 - Easier integration of new weapon types
 - Easier switching weapon parameters of model
 - Improved fair-fight in a distributed simulation exercise

• **Including pre/post-launch information in the weapon server greatly improves the pilots ability to use weapons in a tactical manner**

• **Standardization of weapon server interfaces would facilitate rapid switching between weapon server instances**
 - Focus on data model for requests and responses