THE EFFECT OF SURFACE TREATMENTS AND MANUFACTURING TECHNIQUES ON Ti-Ta ALLOY

C. Pulletikurthi, P. Gill, N. Munroe, S. Pandya, W. Haider

Department of Mechanical and Materials Engineering
Florida International University
DEMANDS/LIMITATIONS OF BIOMATERIALS

- Future demands of biomaterials
 - Good biocompatibility
 - Machinability
 - High performance as the size continues to shrink
 - Minimal maintenance
 - Greener – power source
 - Cost

- Limitations
 - Corrosion
 - Degradation
 - Malfunction of components
COMPOSITION OF Ti-Ta ALLOYS

<table>
<thead>
<tr>
<th>Manufacturing Process</th>
<th>Ti (wt.%</th>
<th>Ta (wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder Metallurgy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>ARC Melting</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>
MANUFACTURING TECHNIQUES

- ARC Melting
- Powder Metallurgy

SURFACE TREATMENTS

- Electropolishing (EP)
- Magnetoelectropolishing (MEP)
VARIABLE PROPERTIES

- Corrosion resistance
- Morphology
- Thickness and nature of the passive oxide layer
- Surface chemistry and speciation
- Surface energy
- Wettability
Corrosion: The destructive attack of a metal by chemical or electrochemical reaction with its environment

\[\text{X} \leftrightarrow \text{X}^{n+} + \text{n}e^- \] ------ (1)

\[\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- \leftrightarrow 4\text{OH}^- \quad \text{pH}, 7 \] ------ (2)

\[\text{O}_2 + 4\text{H}^+ + 4\text{e}^- \leftrightarrow 2\text{H}_2\text{O} \quad \text{pH} < 7 \] ------ (3)

Typical types of corrosion on implants:

- Pitting corrosion
- Crevice corrosion
ANODIC DISSOLUTION OF AN ACTIVE-PASSIVE METAL

\[2H_2O \rightarrow O_2 + 4H^+ + 4e^- \]

\[M \leftrightarrow M^{n+} + ne^- \]

Log current density (Amps/Cm^2)
IN-VITRO CORROSION TESTS

- ASTM F2129-08: Potentiodynamic Cyclic Polarization corrosion tests
- GAMRY Potentiostat Series G 750 with Framework Software
- Phosphate Buffered Saline (PBS)
- Temperature: 37 °C
- Scan rate: 1mV/Sec

1- Standard reference calomel electrode
2 - Working electrode
3 - Counter electrode (Carbon)
4 - Lugging capillary
5 - N₂ gas inlet
6 - N₂ gas outlet
7 - Sample holder

Ref: http://www.gamry.com/Products/ProductPhotos/EuroCell%20Kit.jpg
TYPICAL CYCLIC POTENTIODYNAMIC POLARIZATION CURVES

- Clockwise Loop - Positive Hysteresis
- Anti-clockwise Loop - No Hysteresis

- Crevice Corrosion Resistance
- Pitting Corrosion Resistance
- Corrosion Resistance

Potential (V vs. Ref.)

Current
CYCLIC POLARIZATION CURVES:
Ti-30Ta (PM)
Average Corrosion Parameters for Ti-30Ta (PM) in PBS and Amino Acids

<table>
<thead>
<tr>
<th>Cyclic Potentiodynamic Polarization Measurements</th>
<th>PBS</th>
<th>PBS-BSA</th>
<th>PBS-Glutamine-Histidine-Tryptophan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_v (Volts)</td>
<td>2.367</td>
<td>2.419</td>
<td>2.436</td>
</tr>
<tr>
<td>E_r (Volts)</td>
<td>-0.423</td>
<td>-0.372</td>
<td>-0.355</td>
</tr>
</tbody>
</table>
CYCLIC POLARIZATION CURVES: Ti-30Ta (ARC)

- PBS
- PBS-BSA
- PBS-G-H-T

$E_r = -0.282V$
$E_r = -0.359V$
$E_r = -0.461V$

$E_v = 1.310V$
$E_v = 1.136V$
$E_v = 1.205V$
Cyclic Potentiodynamic Polarization Measurements.

<table>
<thead>
<tr>
<th>Corrosion Parameters</th>
<th>PBS</th>
<th>PBS-BSA</th>
<th>PBS-Glutamine-Histidine-Tryptophan</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_b (Volts)</td>
<td>1.287</td>
<td>1.207</td>
<td>1.241</td>
</tr>
<tr>
<td>E_r (Volts)</td>
<td>-0.433</td>
<td>-0.324</td>
<td>-0.337</td>
</tr>
<tr>
<td>E_b-E_r (Volts)</td>
<td>1.72</td>
<td>1.531</td>
<td>1.578</td>
</tr>
</tbody>
</table>
CORROSION BEHAVIOR OF Ti-30Ta: ARC VS PM

- Anti clockwise loop
- Report E_v
- More resistant to pitting corrosion

- Clockwise loop (hysteresis)
- Report $E_b - E_r$
- Less resistant to pitting corrosion
SURFACE MORPHOLOGY OF Ti-Ta ALLOYS BEFORE (INSET) AND AFTER CORROSION

(a) Ti-Ta PM (b) Ti-Ta ARC
OSTEOBLAST CELL GROWTH

(a) Ti-Ta ARC

(b) Ti-Ta PM
COMPOSITION OF ELECTROLYTE AFTER CORROSION

ICP-MS Analysis:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Ti-30Ta (PM)</th>
<th>Ti-30Ta (ARC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PBS</td>
<td>PBS - G - H - T</td>
</tr>
<tr>
<td>Ti ppb (µg/L)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ta ppb (µg/L)</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
Contact Angle Measurement

<table>
<thead>
<tr>
<th>Sample</th>
<th>Contact Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-30Ta (PM)</td>
<td>68.4</td>
</tr>
<tr>
<td>Ti-30Ta (ARC)</td>
<td>74.5</td>
</tr>
</tbody>
</table>

Kyowa - Contact Angle Meter
Effect of Surface Treatment on Roughness of Ti-Ta, PM

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean Roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>61.9</td>
</tr>
<tr>
<td>EP</td>
<td>126.62</td>
</tr>
<tr>
<td>MEP</td>
<td>86.98</td>
</tr>
</tbody>
</table>

Images

(a) Ti-30Ta Untreated
(b) Ti-30Ta, EP
(c) Ti-30Ta, MEP
EFFECT OF SURFACE TREATMENT ON CORROSION RESISTANCE OF Ti-30Ta

Cyclic Potentiodynamic Polarization Measurements

<table>
<thead>
<tr>
<th>Alloys</th>
<th>E_V (Volts)</th>
<th>E_I (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-Ta (Untreated)</td>
<td>2.616</td>
<td>-0.174</td>
</tr>
<tr>
<td>Ti-Ta (EP)</td>
<td>2.680</td>
<td>-0.301</td>
</tr>
<tr>
<td>Ti-Ta (MEP)</td>
<td>2.690</td>
<td>-0.302</td>
</tr>
</tbody>
</table>
CONCLUSION

- The cyclic potentiodynamic corrosion curve for Ti-Ta, PM displayed an anti clockwise loop, whereas the ARC melted alloy displayed a clockwise loop with hysteresis.
- The alloy manufactured by PM was more resistant to localized corrosion as compared with that manufactured by ARC melting.
- The corrosion susceptibility of Ti-30Ta alloys appeared to increase with the addition of amino acids to PBS.
- Growth of human osteoblast cells were observed on both the alloys.
- Both alloys exhibited hydrophilic behavior.
The project described was supported by Award Number SC3GM084816 from the National Institute of General Medical Sciences. The author would like to acknowledge Dynamet Technology Inc., Burlington, MA, USA for supplying the Ti-30Ta, PM alloy, Frank Biancianiello and NIST for manufacturing the ARC melted Ti-30Ta alloy.