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Presentation Outline

1)  What is machine learning?

2) Why apply machine learning?

3) How does machine learning work?

4) What have been some uses of machine learning for reuse?

5) How should we go about applying machine learning or Al?
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What is machine
learning’?

« carsilfo Q¢



Machine Learning (ML) is the 0 PROVE YOURE A HOMPW
CLICK. ON ALL THE PHOTDS

study and application of THAT SHOW PLACES YOU

: WOULD RUN FOR SHELTER

algorithms that learn from and DURNG A ROBOT UPRISNG.
make predictions based on data = BE 7
« Characteristics/Benefits ‘ﬁ Q=

» Data-driven

\

» Adaptive

» Multivariate

» Nonlinear
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What's the difference between ML & Al?

/ Artificial Intelligence \
Machine Learning

Prediction

\ Objective /
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Machine learning approaches

2023-08-01.pptx/6
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Two types of supervised machine learning

Classification Regression
» Categorical outputs * Numerical outputs
* Is this a dog or a cat? * You open 2.5 cans of tuna and 1.4 bags of
« Useful for alarms catnip. How many cats run to your kitchen?

* Useful for process control

CAROLLO /



Machine learning
implementation styles

* Fault Detection — Monitoring for when an issue
has occurred through pattern recognition on
sensor data

* Soft Sensors — Predicting a slower or more
expensive contaminant of concern with faster or
cheaper data

* Digital Twin — A model with automated,
bidirectional data connectivity to allow both real-
time model updates and control adjustments
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Semi-autonomous operation

Semi-
SCADA/HMI Autonomous
Operation

Human
Artificial Intelligence Operator
M

achine Learning

Prediction

Objective
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o
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Why apply machine
learning’?
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What are the three biggest challenges
facing drinking water utilities?

As of my last update in September 2021, the three biggest challenges facing drinking water

CAROLLO /1 11

. . . . N utilities were as follows:
* Predict location of lead service lines
. . . 1. Aging Infrastructure One of the significant challenges for drinking water utilities is the
* Predict pipes likely to leak Je — _ o
aging infrastructure. Many water supply systems around the world were built decades ago
. ™
° Soft sensors to pred |Ct and are now facing issues related to deterioration, leaks, and inefficiencies. Maintaining and
. . updating the infrastructure to ensure the delivery of safe and reliable water to consumers is
concentrations of contaminants S
a significant challenge for utilities.
« Model GAC PFAS breakth roug h j 2. Water Quality and Contamination Ensuring the safety and quality of drinking water is a
P d . t t ﬂ critical concern for utilities. They must contend with various potential sources of
[ ]
reaict water Tiows contamination, including industrial pollutants, agricultural runoff, and naturally occurring
° D|g |ta| tW| ns that respond to Cha nges contaminants. Additionally, emerging contaminants and chemicals that were not previously
- . . 1 regulated can pose new challenges for utilities in maintaining water quality standards.
3 In temperature, turbidity, etc. _ B
2 > 3. Climate Change and Water Availability Climate change is altering precipitation patterns,
g ° Optimize Cost' energy' and leading to more frequent and intense droughts and floods. These changes can strain water
& : H supplies and affect the availability of water resources for drinking water utilities. Utilities
; reliability of advanced treatment PP g ‘
° f need to develop strategies to cope with changing water availability and ensure sufficient
V)
;: or reuse water supply for growing populations.
g
a]
=
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Tools like ML make water treatment more data-driven
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Conventional alarms set fixed
thresholds on individual variables

Fixed Thresholds

10.0

7.5
. Prediction
E . Event
< . Normal
£ 5.0
P Data
E + Event

*  Normal
2.5
0.0
0 5 10 15 20 25 ROLLO | 13
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Machine learning can construct adaptive, non-
inear boundaries between normal and alarms

Inf. Turb. (NTU)

10.0

7.5

ol
[

2.5

0.0
0

Machine Learning (Radial Support Vector Machine)

5 10 15
Settled TOC (mg/L)

20

25

Prediction

. Event
. Normal

Data

+ Event
¥ Normal
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How does machine
earning work?
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There are lots of types of machine learning

6 Available Models

The models below are available in train . The code behind these protocols can be obtained using the

function getModelInfo or by going to the github repository.

Show (238) «|entries

Search:
Model method Value Type Libraries Tuning Parameters

AdaBoost

Classification adaboost Classification fastAdaboost nlter, method

Trees
% - mfinal, maxdepth,
= AdaBoost. M1 AdaBoost.M1 Classification adabag, plyr
2 coeflearn
% Adaptive
~ Mixture . -
g o amdai Classification adaptDA model
Discriminant
‘;” Analysis CAROLLO / 18



k-Nearest Neighbors guesses data is the same
category as the nearest neighbors

0.072-
_0.068
5
E" Event
Tel * Normal
% 0.064
< 0.
35 \\7
? /?
A 4 o '/\
LYY -
0.060 AR S :I; i

8.00 8.05 8.10 8.15 8.20




Overfitting is a key risk for machine learning

Overfitting = mistaking randomness, noise
or error for real information

Overfit classification model Overfit regression model

15
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Machine learning requires training
and testing to avoid overfitting

Bootstrap Cross-Validation within
Training Set to Select Tuning Parameters

Split
Training / Original | Bootstrap 1 | Bootstrap 2 Evaluate on Testing Set
Testing Sets
Row #| TOC [Row #| TOC |Row #| TOC Actual
< 1 | 73] 7 [ 63| 6 | 80
2 10.7 8 7.7 7 6.3 Event | Normal
Internal
3 190 2 [107] 3 | 90 | Training -
4 8.1 7 6.3 8 77 | Set ,g Event 12
" 5 | 81| 7 | 63| 3 |90 §
{ 6 |80 | 1 | 73| 4 | ai & | Normal 91
7 | 63| 6 | 80| 8 | 77
.| 8 |77 | 8 | 77| 7 | 63

Best Average Accuracy For the Bootstrapped Internal

Testing Sets — Select These Tuning Parameters
CAROLLO / 19
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What have been some
uses of machine
earning for reuse?
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Machine learning case
study #1: Classification
for fault detection
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WRF
Project
5043

Integrating real-time
collection system
monitoring approaches
into enhanced source
control programs for
potable reuse

Sensors for broader
variety of water quality
parameters become
available (optical,
specific metals,

automated GC/MS) ==

WRF 4908 reality
strikes back:
maintenance,

@ ragging, etc.
‘ ¥'s) This project:
D gy balance, realism,

.‘Q’.

Idea conceived to
use real-time
sewershed
monitoring to
protect reuse

Expectations

— .0l

practical guidance

PLATEAU OF
PRODUCTIVITY

INNOVATION

TRIGGER Source: https://www.gartner.com/en/research/
methodologies/garner-hype-cycle.

Time
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Hampton Roads Sanitation District (HRSD)'s
Sustainable Water Initiative for Tomorrow (SWIFT)

* Research Center
(RC) treats 1 MGD

» “Carbon-based”
advanced treatment

Demonstration Facility

e Flocculation and e Ozone Contact 9 Biologically Active o Granular Activated

Sedimentation Filtration Carbon Contactors
© uttraviolet @ chiorine Contact @) Chemical Addition @) Aquifer Recharge
Disinfection

CAROLLO / 23




Could
machine e
: N N
learning be I
=
used for an EZD- - Variable
alert system = _ Biof.In. pH
* |Inf. pH
at SW”:T RC? :E; * Inf.iemp.
=151 - * Inf. TOC
i E Settled TOC
e | -
ﬂ 10- m—-u- .1._ -—'_._ﬂ-w_'- -
R
e T e _ﬁ—_-——---‘-------_--_--_-
06/16 06/18 06/20 06/22
Date

CAROLLO | 24




HRSD data for machine learning e R— .

* 3 Industrial Discharge Events (in Time Periods #2, #3, and #4)
CAROLLO / 25

Flow gpm
| .t .t d d Total Nitrogen mg/L
a e r SyS e | | I S-t u y ata S et Total Inorganic Nitrogen mg/L
Total Organic Carbon mg/L
Nitrite mg/L
. Nitrogen Oxides mg/L
e 30 variables Secondary Wastewater Ni
itrate mg/L
. . . Effluent
» Mostly water quality but included total flow and ozone sidestream flow. Ammonia mg/L
Conductivity mS/cm
» T Raw Influent UV Transmittance %
» 13 (Plurality) Secondary Effluent Turbidity NTU
pH
» 8 Settled (Post Floc/Sed) — o
» 4 Ozonation System UV Transmittance %
L . Monochloramine mg/L
» 4 Biofiltration Influent Ammonium mg/L
Settled Water Total chlorinfe mg/L
* Hourly data frequenc oo porente
y q y Total Organic Carbon mg/L
Total Nitrogen mg/L
° : : Free Ammonia mg/L
Q 4 time per|OdS Ozone Dose Ibs/day
35 h h . . .
2 May 20t, 2019 to June 4™, 2019 (Training Set) Ozonation System Ozone Sidestream Flow gpm
S o Ozone Residual Setpoint
8 2. June 15th, 2019 to June 215, 2019 (Training Set) Ozone Residual mg/L
S .. UV Transmittance %
~ th nd
P 3. May 25™, 2020 to June 2", 2020 (Training Set) - Total Chiorine mg/L
g Biofiltration Influent H
2 4. October 17th, 2020 to October 21st, 2020 pH
= Redox potential mV
=
a]
S
o)



Benchmarking against fixed thresholds

Threshold set to maximum or minimum normal value within training set

Traini
raining

. WA ™
AH\/?.' 1 r’\""' A" ;5

i ¥ sl
. 40 . v
] . ,V
f * Min.
= 30 1 Normal
Inf. UVT

20

05/20 05/27 06/03 06/16 06/M18 06/20 06/22 05/26 05/28 05/30 06/01 10/18 10/20 1o/22 CAROLLO /26
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Screening results

* 35 models screened

« Six selected for in-depth

evaluation Training Set | Testing Set

Cost-Sensitive C5.0 C5.0Cost 99% 97% 86%

- Event sensitivity = predicted Oblique Random Forest

event when true answer was with Support Vector ORFsvm 99% 96% 82%
event :
Machines

Random Forest Rule-
Based Model

» Two highest training set accuracy

» Two highest test set accuracy
» Two highest event sensitivity

rfRules 98% 54% 100%

Support Vector
Machines with Radial svmRadial 99% 83% 25%
Basis Function Kernel

15t highest out of 35 279 highest out of 35

CAROLLO /| 27
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Boosted Tree (bstlree)

Standard Deviation

Boosted Tree (bstTree) was the most accurate

model after optimization

Testing set accuracy = 99.3%

1 false negative, 0 false positives

Would have detected event in about 1 hour

L - y - -
> . . o. .‘ -. > s *a * [ -
R e N
LY L *
"\.n--". \ o P
P ol - '~
" LT -
o o
] - ‘5-.
-. .
-‘-:.
Oct 18 Oct 20 Oct 22

Results

¥ False Negative

Variable

* Inf. pH
* Raw Cond.
*  Settled TOC

Training Set Accuracy
Testing Set Accuracy

Testing Set Balanced Accuracy
Testing Set Cohen'’s Kappa
Testing Set Event Sensitivity
Testing Set False Positives

Time until 1% Detection (hr)
Preprocessing

Variables Used

Tuning Parameters

99.3%
99.2%

98.2%
0.976
96%
0
1

None
13

maxdepth=3,
nu=0.1,
mstop=150

CAROLLO
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o « Among Fixed Thresholds, Influent UVT had
leed -th res hO | d S resy |tS highest test set accuracy, 98.3%

* Only one more error compared to best
Machine Learning model

Trai)ang
'd \
1 2 3 4
Eu_ L k Aé; ] k
2 : 0 SR
Arn/= ™M / ' ;‘f‘; -
50 : y * \—q\
"""""""""""""""" |- IR 1
40 - LV
g . H
i * Min.
e 30 7 Normal
; ‘ Inf. UVT
20

05/20 05/27 06/03 06/16 06/18 06/20 06/22 05/26 05/28 05/30 06/01 10/18 10/20 10/22 CAROLLO /29
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* The best machine learning model (bstTree) performed better than
any fixed threshold with a testing set accuracy of 99.3%.

« Zero false positives over 5-day testing set.

 Time until first

detection ~1 hour.
® Inf. pH

« However, only better than Inf. )
UVT threshold by about
1% with the data used for
this proof-of-concept.

e Raw Cond.

° ® Settled TOC

N
1

]

[ ]

Conclusions

* More data (especially if
included 4+ industrial
events) would improve both:

Standard Deviation
o
i‘
‘ 9
S
5
Sope
..‘ . 0N
.:{
T

» The accuracy of the machine -2 7 v A
learning models '... o
[ ]
» The confidence of the | b . -
comparative evaluation Oct 18 Oct 20 Oct 22
Date

CAROLLO / 30




Machine learning case
study #2: Regression
for soft sensor

« carsilfo Q¢



WRF 5129

Demonstration of
innovation to improve
pathogen removal,
validation, and/or
monitoring in Carbon
Based Advanced
Treatment (CBAT) for
potable reuse

CAROLLO / 32




Current reqgulatory paradigm:
Disinfection = Concentration x Time (CT)

1,000,000

100,000 |

10,000 |-

Total 1,000 | .
Coliform
(cfus100 100

mb) 10
1 -

ol
0.0 W 20 3.0 40 5.0

CT (mg-min/L)
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Not an ideal relationship

|
E 100000 £ Influent Total Coliform Count= 22,000-180,000 MPN/100mL
o ,
= .,
2 10000 &
=
= 3
€ 1000
2 @
5 ~{ It
) 100
©
- @® o
(o) i)
= e °
E o
E 1 ' e — : — ' %
0.00 2.00 4.00 6.00 8.00
CT, mg-min/L
® SamplePointA ® SamplePointl
® SamplePoint2 &  Sample Point 3
@ SantaRosaData - = Target Effluent Concentration
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O;:(TOC+NO,) — a better way to dose ozone

MS2 Log Reduction

8.0

B.O

x X

3 X > X o
» ® " *
x L
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X
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X
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20
x
10
X n
oo £ X
0.00 0.20 0.40 0.60 0.80
* SP-210(Phase ? tests)
A 5P-221 (Phase 2 tests)
X Santa Rosa Data
® H20 Engineering-SLO Sand-Filtered Benchtop Test Water
B H20 Engineering-15D Membrane-Filtered Benchtop Test Water

- = Targel M52 Log Reduction

o]

B O M

SP-2116 {Phase 2 tests)

SP-227 {Phase 1 tests)

H20 Engineering-150D Pilot Test Water

H20 Engineering-SL0O Membrane-Filtered Benchtop Test Water
Anaheim Full Scale Test Results

Altamonte Springs Dala
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One disadvantage — TOC measures more
slowly than ozone residual

Chen, E.C., et al. 2020. Ozone Sci. Eng. 42, 213-229.

CAROLLO / 386

7.0

= 6.8-
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E

3

6.6

o

2

©
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6.4 -
00:00 06:00 12:00 18:00 00:00

2 Time
2 Table 1. General characteristics of tested ozone analyzers.
2 Parameter Meter A: Kuntze Krypton Dis  Meter B: Rosemount 499A OZ  Meter C: Hach CL17  Meter D: 2B Technologies UV-106-W
E Measurement range 0-5 mg/L 0-3 mg/L 0-5 mg/L 0-100 mg/L
> Analysis time Continuous Continuous 2.5 min 10s
§
s
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ML predicts TOC to enable rapid
TOC-based ozone dosing

Predicted Settled TOC vs Actual Settled TOC « Random Forest
9

.
! L * Root Mean Square Error
= 0.171 mg/L

Predicted

CAROLLO /| 37



How should we go about
applying ML/AI?



Have a clear problem statement

» What are you trying to predict?
* How will that prediction be used? WAIT! NAIL.
» What information would feed the prediction? HAMMER

» Do you have that information? NO !

* Would a simpler tool get the job done?

Yishi Zuo, 2021

CAROLLO / 39



https://www.yishizuo.com/dont-be-a-hammer-looking-for-a-nail/

Establish appropriate benchmarks, metrics, and goals

NO

"99.13% ACCURATE

xkcd.com

XKCDCOM PRESENTS A NEW “15 1T CHRISTMAS
SERVICE T0 COMPETE. WJITH ISITCHRISTMAS.COM
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ML is best applied to data rich
environments and complex problems

Data Availability o Comole
Does typical pre-existing rocess Complexity

instrumentation provide enough \ s thelprocess I§uff|C|entIy
input variables for a ML model? _‘%{: COmIplex. Hon=lnea, of
”

Data Variability

Does typical pre-existing data
ga (both influent water quality
and operational settings)

Has the data been collected for unknown that it is reasonable
to expect that an ML model

provide enough range for
meaningful model training?

long enough or at a high
enough frequency to generate a
sample size that is valid for ML?

would meaningfully outperform
a simpler (e.g. linear) model?

Process Flexibility

Do operators have the power
to adjust operation settings,
or is operation constrained by
design or regulation?

Cost & Energy

Does the process represent a
substantial overall fraction of the
energy usage or operational
costs at utilities? Would efficien-
Cy gains in this process meaning-
fully impact the overall energy or
expenses for the facility?

Process Dynamicity

Do the input variables or ideal
response vary quickly enough
to merit an automated or
real-time ML implementation?
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ML modeling requires not only high sample
Size, but also meaningful range

200 200
150 150 o ‘.‘
t= R2=0917 , Sawv

R* = 0.2374 '.. L&:?.u

100 g ’.O. 100 ° o;*‘o.ﬁ ¢
See’e o S0e% 0 o
LA e
50 %o 50 N ;;;. L
e® .-®
..." Y
® 2a%o0ed
0 0 .o
0 50 100 150 200 0 50 100 150 200
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ML modeling requires not only high sample
Size, but also meaningful range

Classification: Dog or Cat?

CAROLLO / 43




There are several partnership strategies
through which to implement ML/A|

@ HOMEGROWN

ACADEMIC CONSULTANT




n
N
=
X
ol
Q
o
<
oo}
<
%)
[aN)
o
159
i)
°
<
V)
~
£
©
o
©
c
£
=
=
O
(@)

Factors such as transparency, cost, and scalability
impact ML/Al implementation decisions

Transparency

Cost

Scalability

Long-Term
Sustainability

Cybersecurity

Do | want to see the code?

Subscription fees?
In-house employees(s)?

How quickly can this go
from trial to full-scale?

Stable costs?
Employee turnover?

Are sufficient firewalls in place?

oo
$
o

A
o
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The best way to begin and implement ML/AI
depends on factors such as utility size

@ HOMEGROWN

UTILITY SIZE

ACADEMIC CONSULTANT

APPLICATION TECHNOLOGICAL
MATURITY
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Thank You!

kthompson@carollo.com
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