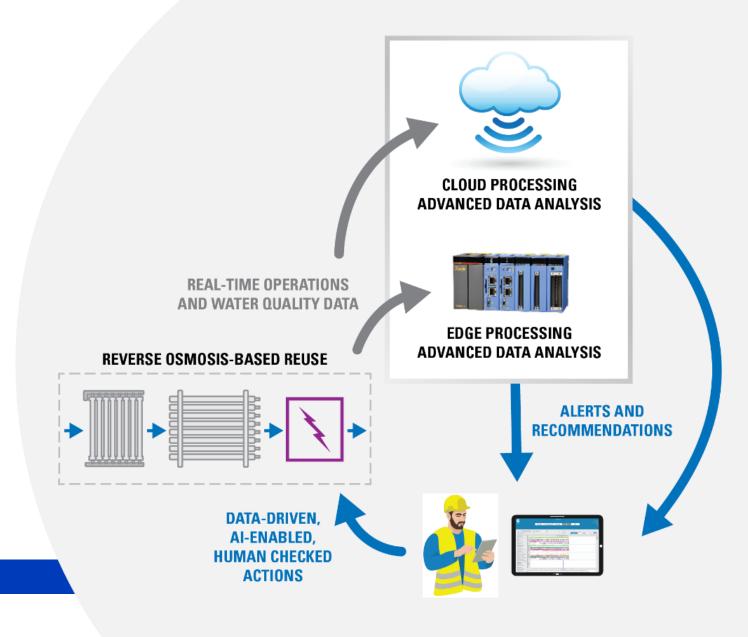
Texas AWWA Water Science Lunch Break Seminar

Machine Learning for Potable Reuse

Kyle Thompson, PhD, PE kthompson@carollo.com Austin, TX



August 30, 2023

Presentation Outline

- 1) What is machine learning?
- 2) Why apply machine learning?
- 3) How does machine learning work?
- 4) What have been some uses of machine learning for reuse?
- 5) How should we go about applying machine learning or AI?

What is machine learning?

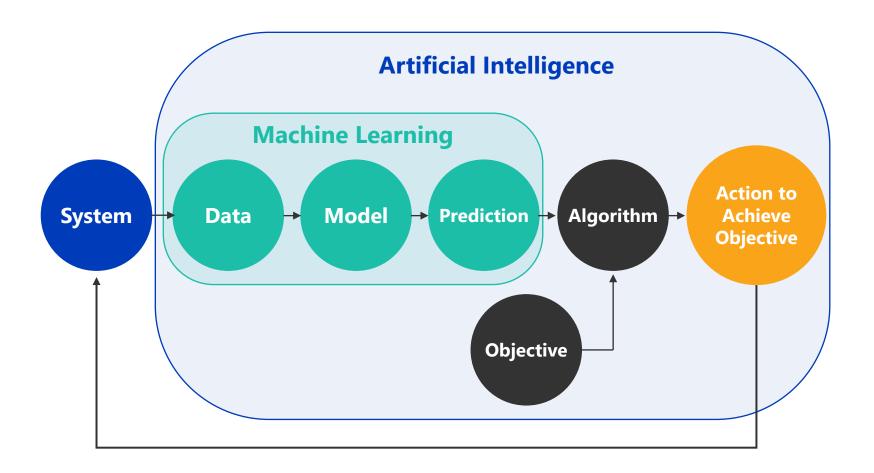
Webinar Part 2 Carollo 2023-08-01.pptx/

Machine Learning (ML) is the study and application of algorithms that learn from and make predictions based on data

- Characteristics/Benefits
 - » Data-driven
 - » Adaptive
 - » Multivariate
 - » Nonlinear

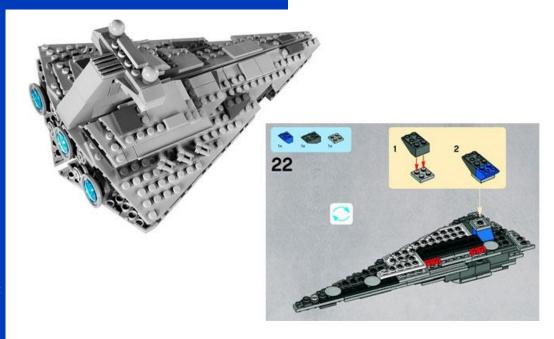
TO PROVE YOU'RE A HUMAN, CLICK ON ALL THE PHOTOS THAT SHOW PLACES YOU WOULD RUN FOR SHELTER DURING A ROBOT UPRISING.

What's the difference between ML & AI?



Machine learning approaches

Supervised



Unsupervised

Two types of supervised machine learning

Classification

- Categorical outputs
- Is this a dog or a cat?
- Useful for alarms

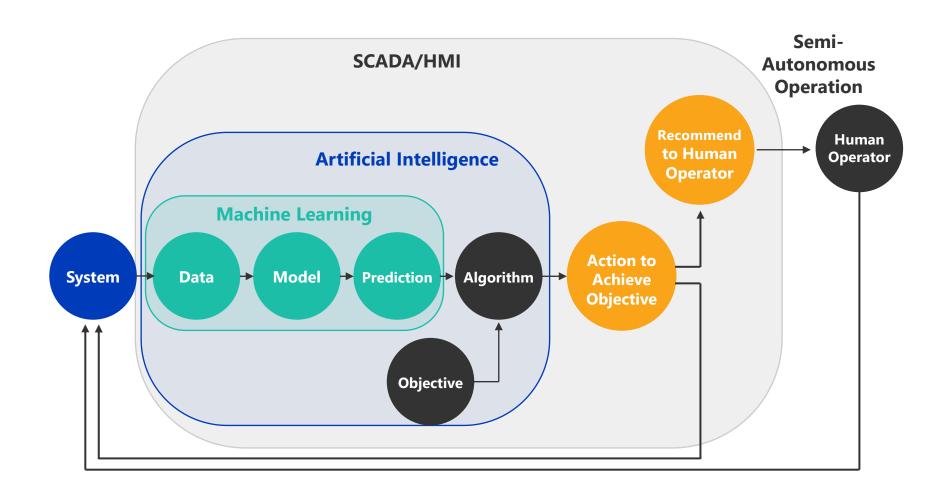
Regression

- Numerical outputs
- You open 2.5 cans of tuna and 1.4 bags of catnip. How many cats run to your kitchen?
- Useful for process control

Machine learning implementation styles

- Fault Detection Monitoring for when an issue has occurred through pattern recognition on sensor data
- Soft Sensors Predicting a slower or more expensive contaminant of concern with faster or cheaper data
- Digital Twin A model with automated, bidirectional data connectivity to allow both realtime model updates and control adjustments

Semi-autonomous operation



2

Why apply machine learning?

What are the three biggest challenges facing drinking water utilities?

- Predict location of lead service lines
- Predict pipes likely to leak
- Soft sensors to predict concentrations of contaminants
- Model GAC PFAS breakthrough
- Predict water flows
- Digital twins that respond to changes in temperature, turbidity, etc.
- Optimize cost, energy, and reliability of advanced treatment for reuse

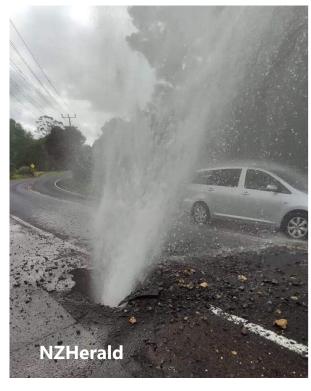
As of my last update in September 2021, the three biggest challenges facing drinking water utilities were as follows:

- 1. Aging Infrastructure One of the significant challenges for drinking water utilities is the aging infrastructure. Many water supply systems around the world were built decades ago and are now facing issues related to deterioration, leaks, and inefficiencies. Maintaining and updating the infrastructure to ensure the delivery of safe and reliable water to consumers is a significant challenge for utilities.
- 2. Water Quality and Contamination

 Ensuring the safety and quality of drinking water is a critical concern for utilities. They must contend with various potential sources of contamination, including industrial pollutants, agricultural runoff, and naturally occurring contaminants. Additionally, emerging contaminants and chemicals that were not previously regulated can pose new challenges for utilities in maintaining water quality standards.
- 3. Climate Change and Water Availability Climate change is altering precipitation patterns, leading to more frequent and intense droughts and floods. These changes can strain water supplies and affect the availability of water resources for drinking water utilities. Utilities need to develop strategies to cope with changing water availability and ensure sufficient water supply for growing populations.

Tools like ML make water treatment more data-driven

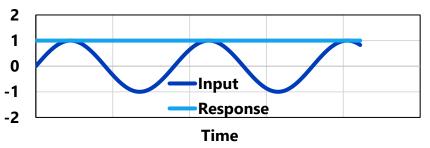
Forget-It



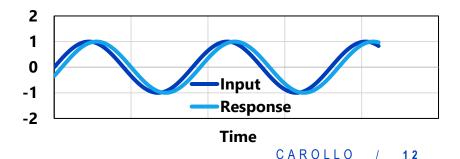
Reduce
Downtime

↑
Reactive → Predictive

Set-It-And- → Adaptive

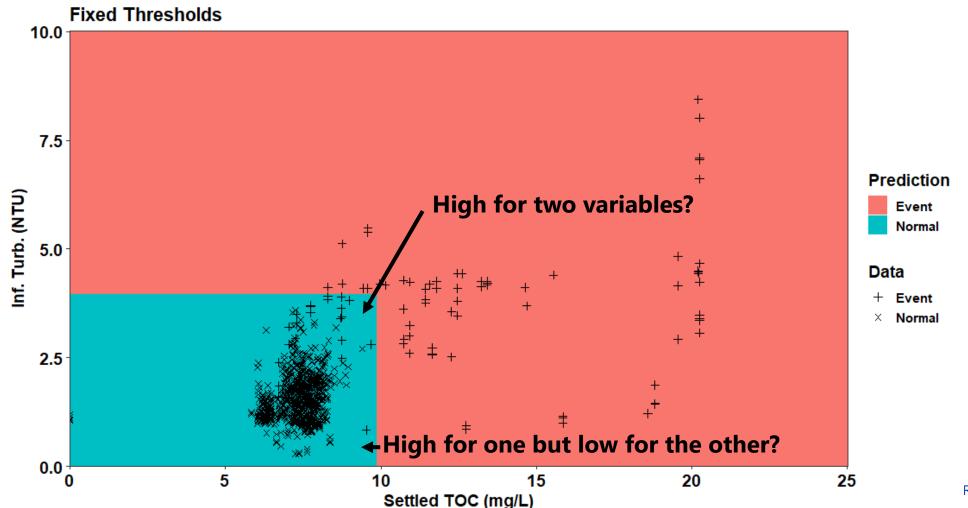


Save Cost and Energy

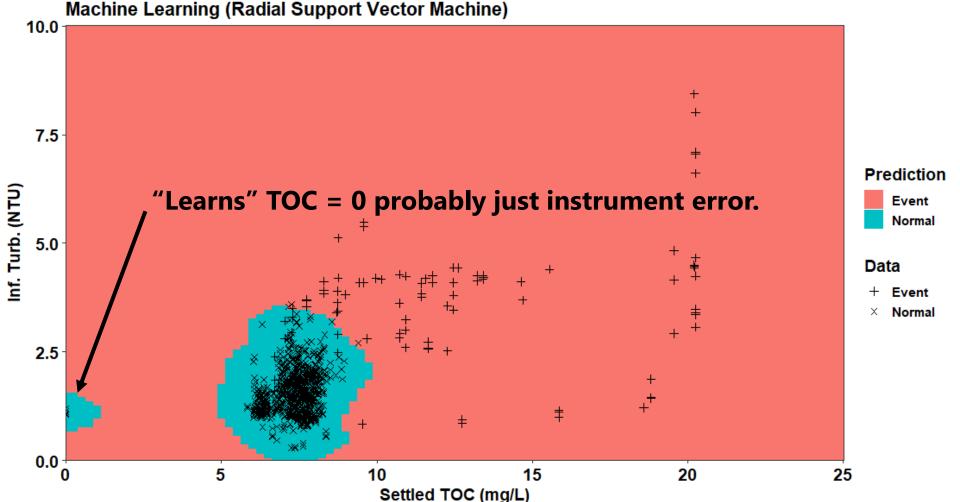


OCWD Webinar Part 2 Carollo 2023-08-01.pptx

Conventional alarms set fixed thresholds on individual variables



Machine learning can construct adaptive, nonlinear boundaries between normal and alarms



3

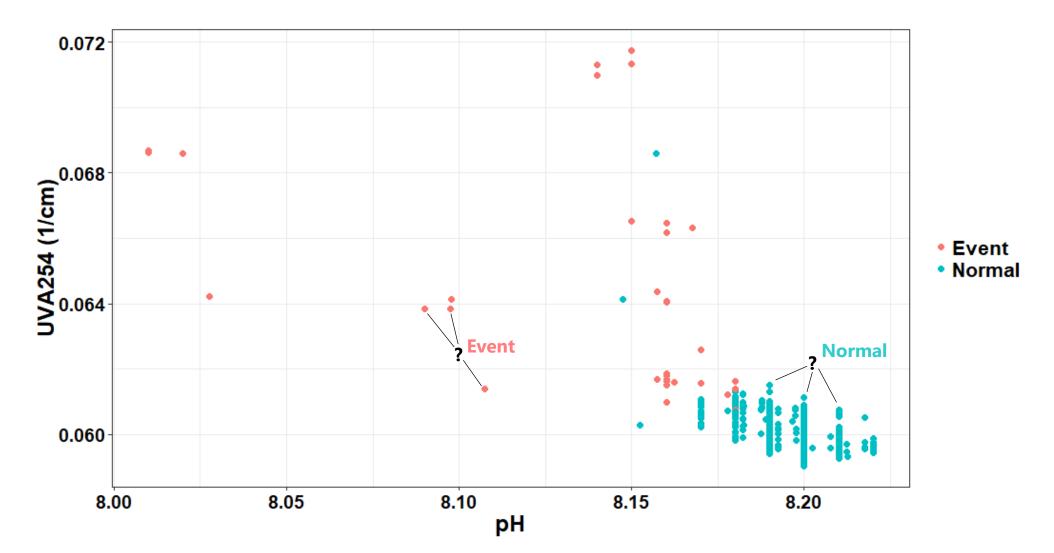
How does machine learning work?

There are lots of types of machine learning

6 Available Models

The models below are available in train. The code behind these protocols can be obtained using the function getModelInfo or by going to the github repository. entries Search: method Value **Tuning Parameters** Model Libraries Type AdaBoost Classification Classification adaboost fastAdaboost nlter, method Trees mfinal, maxdepth, Classification AdaBoost.M1 AdaBoost.M1 adabag, plyr coeflearn Adaptive Mixture Classification amdai adaptDA model Discriminant Analysis

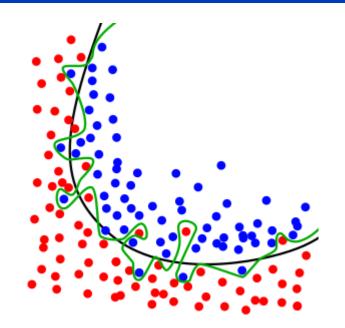
k-Nearest Neighbors guesses data is the same category as the nearest neighbors



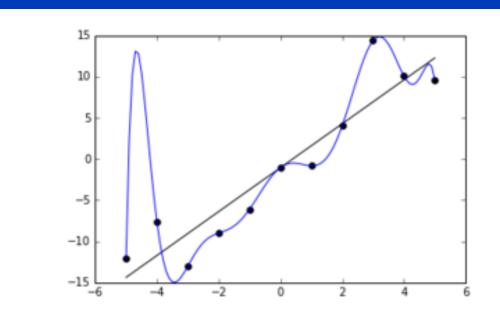
Overfitting is a key risk for machine learning

Overfitting = mistaking randomness, noise or error for real information

Overfit classification model



Overfit regression model



Machine learning requires training and testing to avoid overfitting

Bootstrap Cross-Validation within Training Set to Select Tuning Parameters

Split Training / Original Bootstrap 1 Bootstrap 2 **Testing Sets** Row # TOC Row # TOC Row # TOC 6.3 8.0 7.3 6 10.7 7.7 6.3 9.0 10.7 9.0 Data 7.7 8.1 6.3 8 4 8.1 6.3 9.0 **Test** 7.3 8.1 8.0 6 4 8.0 6.3 8 7.7 6 8 7.7 8 6.3

Internal Training Set

Internal Testing Set

Best Average Accuracy For the Bootstrapped Internal Testing Sets → Select These Tuning Parameters

Evaluate on Testing Set

		Actual	
		Event	Normal
Prediction	Event	12	1
Predi	Normal	16	91

4

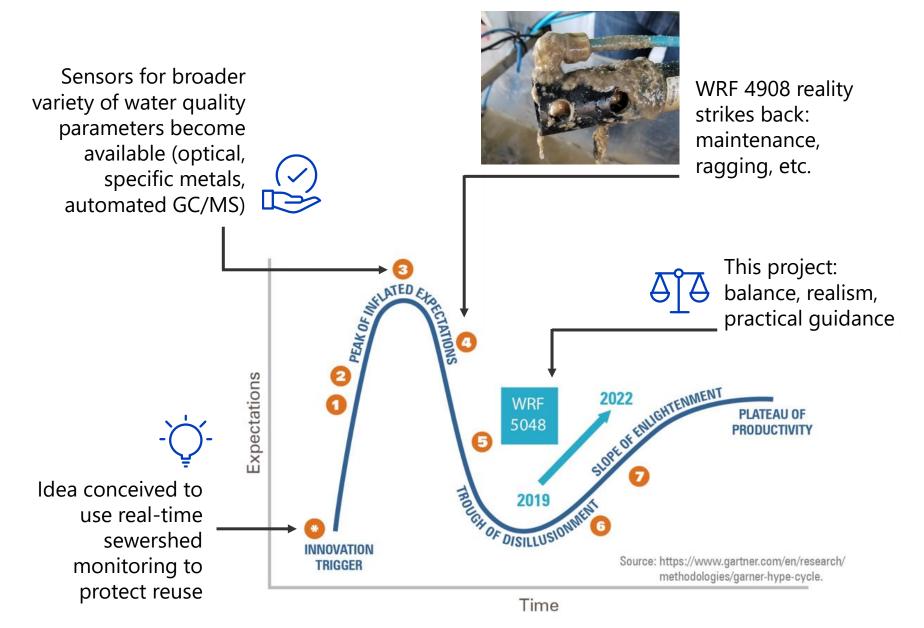
What have been some uses of machine learning for reuse?

44

Machine learning case study #1: Classification for fault detection

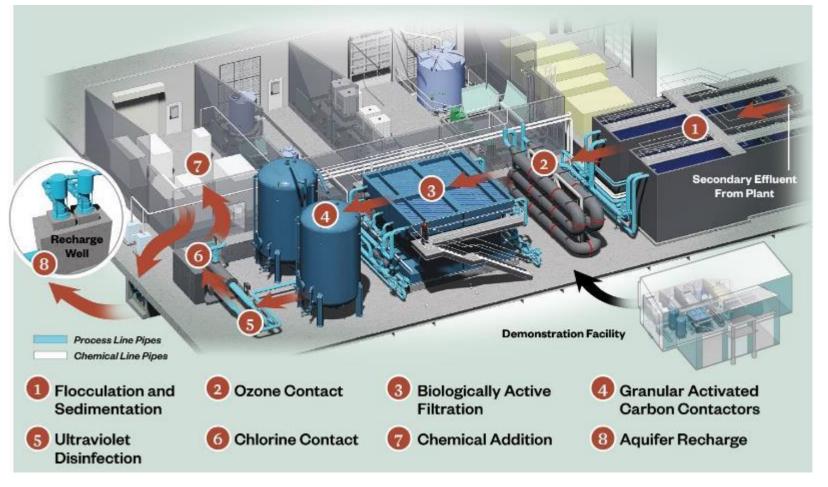
WRF Project 5048

Integrating real-time collection system monitoring approaches into enhanced source control programs for potable reuse



Hampton Roads Sanitation District (HRSD)'s Sustainable Water Initiative for Tomorrow (SWIFT)

- Research Center (RC) treats 1 MGD
- "Carbon-based" advanced treatment



Could machine learning be used for an alert system at SWIFT RC?



HRSD data for machine learning alert system study dataset

30 variables

- » Mostly water quality but included total flow and ozone sidestream flow.
- » 1 Raw Influent
- » 13 (Plurality) Secondary Effluent
- » 8 Settled (Post Floc/Sed)
- » 4 Ozonation System
- » 4 Biofiltration Influent

Hourly data frequency

4 time periods

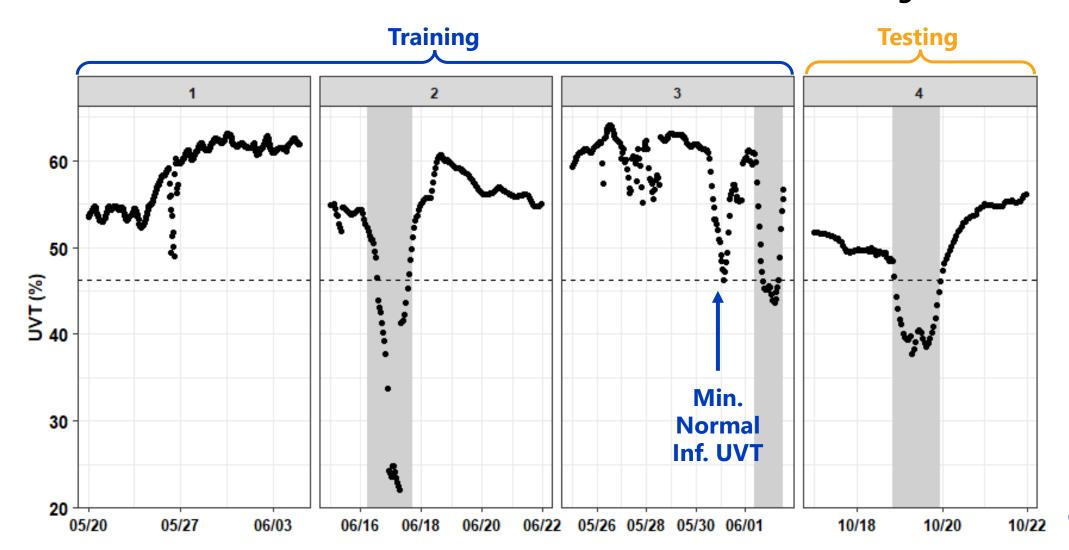
- 1. May 20th, 2019 to June 4th, 2019 (Training Set)
- 2. June 15th, 2019 to June 21st, 2019 (Training Set)
- 3. May 25th, 2020 to June 2nd, 2020 (Training Set)
- 4. October 17th, 2020 to October 21st, 2020 (Testing Set)
- 3 Industrial Discharge Events (in Time Periods #2, #3, and #4)

Location	Variable	Units
Raw Wastewater Influent	Conductivity	μS/cm
	Flow	gpm
	Total Nitrogen	mg/L
	Total Inorganic Nitrogen	mg/L
	Total Organic Carbon	mg/L
	Nitrite	mg/L
	Nitrogen Oxides	mg/L
Secondary Wastewater	Nitrate	mg/L
Effluent	Ammonia	mg/L
	Conductivity	mS/cm
	UV Transmittance	%
	Turbidity	NTU
	рН	
	Temperature	°C
	UV Transmittance	%
	Monochloramine	mg/L
	Ammonium	mg/L
Settled Water	Total chlorine	mg/L
Settled Water	Redox potential	
	Total Organic Carbon	mg/L
	Total Nitrogen	mg/L
	Free Ammonia	mg/L
	Ozone Dose	lbs/day
Ozonation System	Ozone Sidestream Flow	gpm
Ozonation System	Ozone Residual Setpoint	
	Ozone Residual	mg/L
	UV Transmittance	%
Biofiltration Influent	Total Chlorine	mg/L
2.3	рН	
	Redox potential	mV

Webinar Part 2 Carollo 2023-08-01.pptx/26

Benchmarking against fixed thresholds

Threshold set to maximum or minimum normal value within training set



Screening results

- 35 models screened
- Six selected for in-depth evaluation
 - » Two highest training set accuracy
 - » Two highest test set accuracy
 - » Two highest event sensitivity
 - Event sensitivity = predicted event when true answer was event

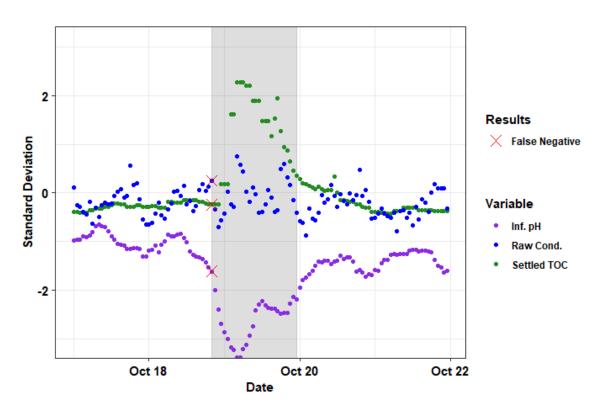
Model	Abb.	Training Set Accuracy	Testing Set Accuracy	Event Sensitivity
Boosted Tree	bstTree	99%	95%	89%
Cost-Sensitive C5.0	C5.0Cost	99%	97%	86%
Oblique Random Forest with Support Vector Machines	ORFsvm	99%	96%	82%
Penalized Logistic Regression	plr	100%	88%	50%
Random Forest Rule- Based Model	rfRules	98%	54%	100%
Support Vector Machines with Radial Basis Function Kernel	svmRadial	99%	83%	25%

1st highest out of 35

2nd highest out of 35

Boosted Tree (bstTree)

- Boosted Tree (bstTree) was the most accurate model after optimization
- Testing set accuracy = 99.3%
- 1 false negative, 0 false positives
- Would have detected event in about 1 hour



Training Set Accuracy	99.3%	
Testing Set Accuracy	99.2%	
Testing Set Balanced Accuracy	98.2%	
Testing Set Cohen's Kappa	0.976	
Testing Set Event Sensitivity	96%	
Testing Set False Positives	0	
Time until 1 st Detection (hr)	1	
Preprocessing	None	
Variables Used	13	
Tuning Parameters	maxdepth=3, nu=0.1, mstop=150	

__

Fixed thresholds results

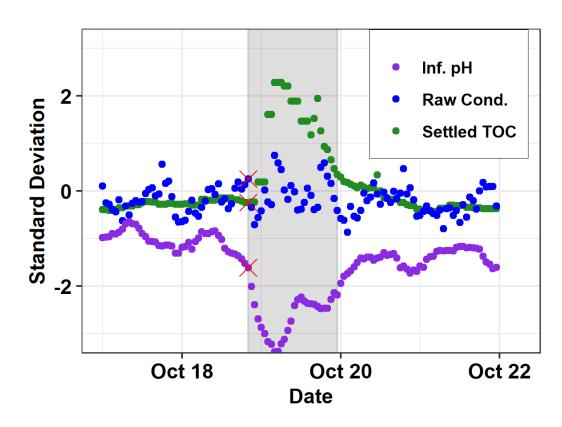
- Among Fixed Thresholds, Influent UVT had highest test set accuracy, 98.3%
- Only one more error compared to best Machine Learning model



WD Webinar Part 2 Carollo 2023-08-01.pptx/

Conclusions

- The best machine learning model (bstTree) performed better than any fixed threshold with a **testing set accuracy of 99.3%**.
- Zero false positives over 5-day testing set.
- Time until first detection ~1 hour.
- However, only better than Inf. UVT threshold by about 1% with the data used for this proof-of-concept.
- More data (especially if included 4+ industrial events) would improve both:
 - » The accuracy of the machine learning models
 - » The confidence of the comparative evaluation



For more information:

Thompson, K.A., Branch, A., Nading, T., Dziura, T., Salazar-Benites, G., Wilson, C., Bott, C., Salveson, A., Dickenson, E., 2022. Detecting Industrial Discharges at an Advanced Water Reuse Facility Using Online Instrumentation and Supervised Machine Learning Binary Classification. Front. Water 4, 1014556.

4B

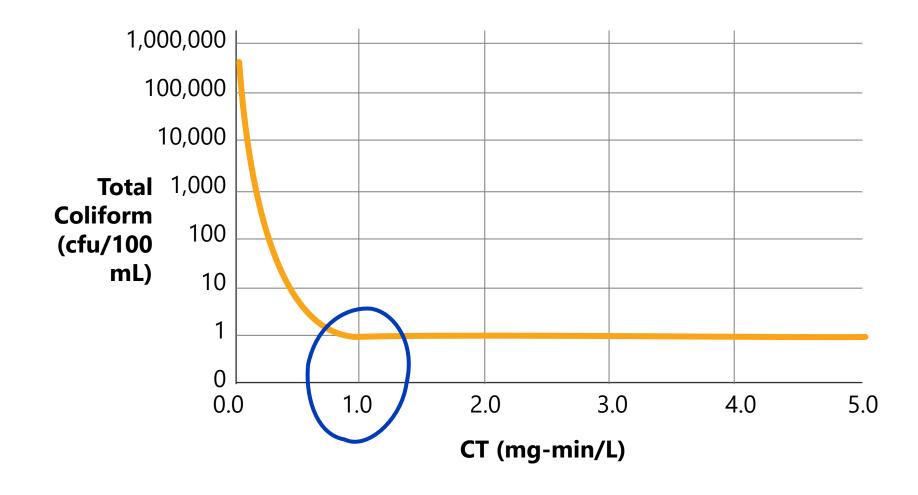
Machine learning case study #2: Regression for soft sensor

WRF 5129

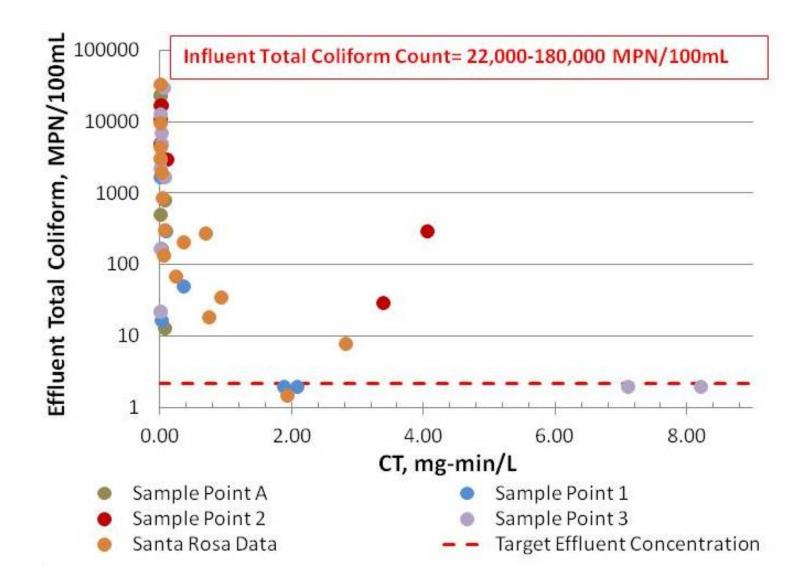
Demonstration of innovation to improve pathogen removal, validation, and/or monitoring in Carbon Based Advanced Treatment (CBAT) for potable reuse

Current regulatory paradigm:

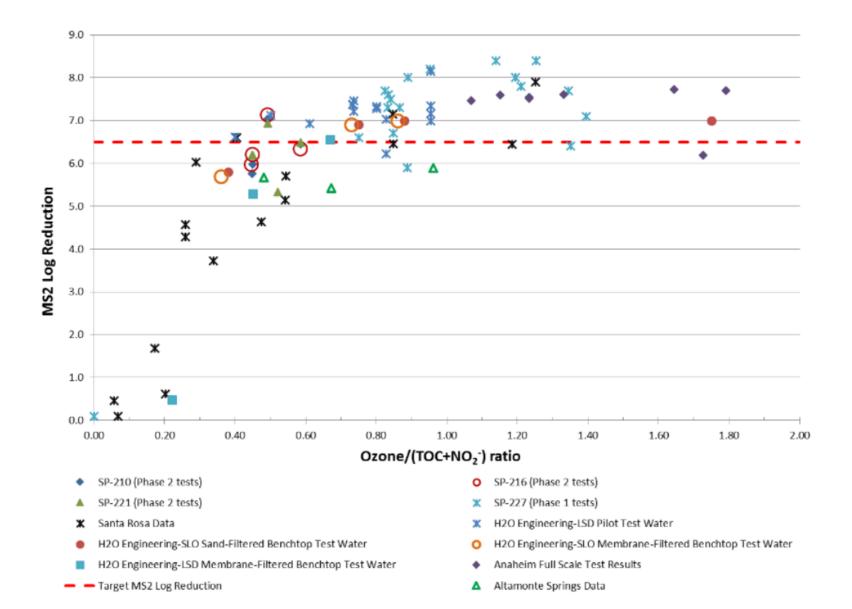
Disinfection = Concentration × Time (CT)



Not an ideal relationship



O_3 :(TOC+NO₂) – a better way to dose ozone



One disadvantage – TOC measures more slowly than ozone residual

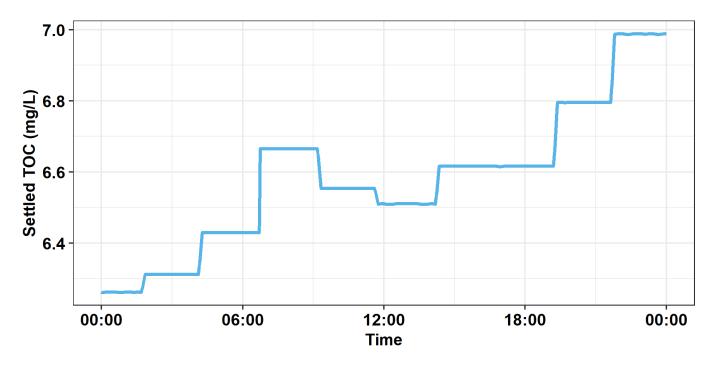
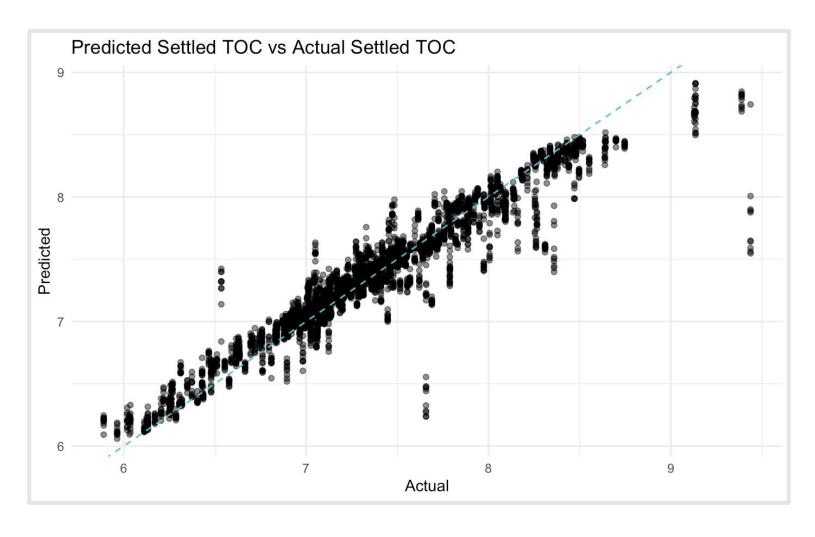


Table 1. General characteristics of tested ozone analyzers.

Parameter	Meter A: Kuntze Krypton Dis	Meter B: Rosemount 499A OZ	Meter C: Hach CL17	Meter D: 2B Technologies UV-106-W
Measurement range	0–5 mg/L	0–3 mg/L	0–5 mg/L	0–100 mg/L
Analysis time	Continuous	Continuous	2.5 min	10 s

Chen, E.C., et al. 2020. Ozone Sci. Eng. 42, 213-229.

ML predicts TOC to enable rapid TOC-based ozone dosing



- Random Forest
- Root Mean Square Error $= 0.171 \, \text{mg/L}$

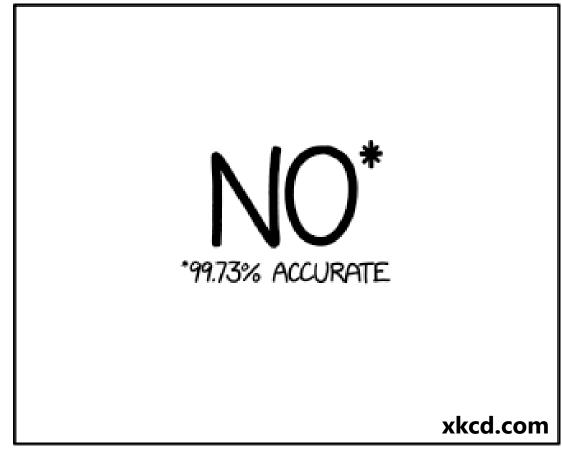
5

How should we go about applying ML/AI?

Have a clear problem statement

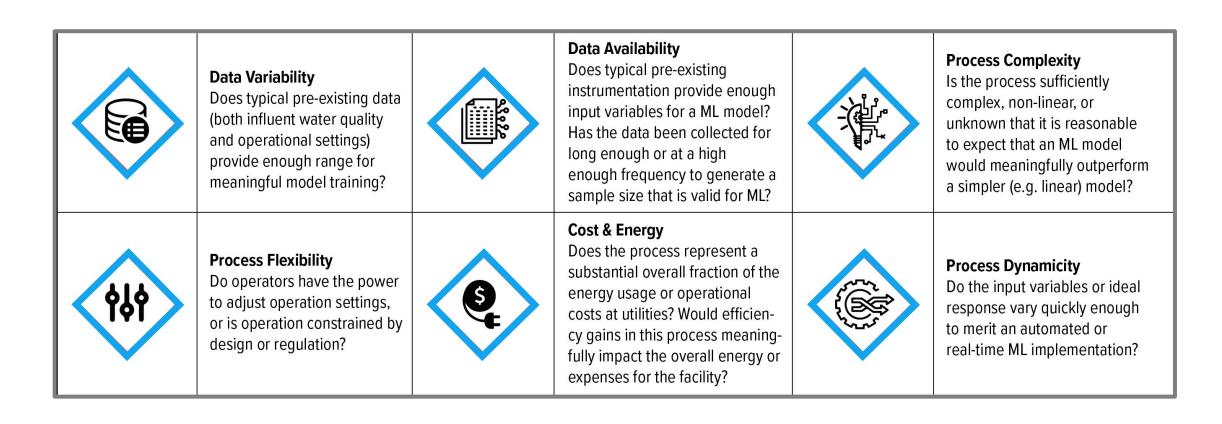
- What are you trying to predict?
- How will that prediction be used?
- What information would feed the prediction?
 - » Do you have that information?
- Would a simpler tool get the job done?

Establish appropriate benchmarks, metrics, and goals

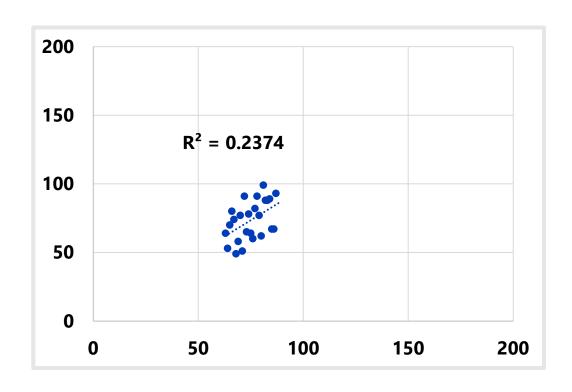


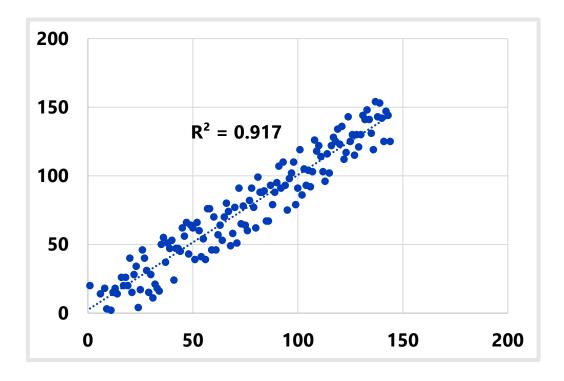
XKCD.COM PRESENTS A NEW "15 IT CHRISTMAS" SERVICE TO COMPETE WITH ISITCHRISTMAS.COM

ML is best applied to data rich environments and complex problems



ML modeling requires not only high sample size, but also meaningful range

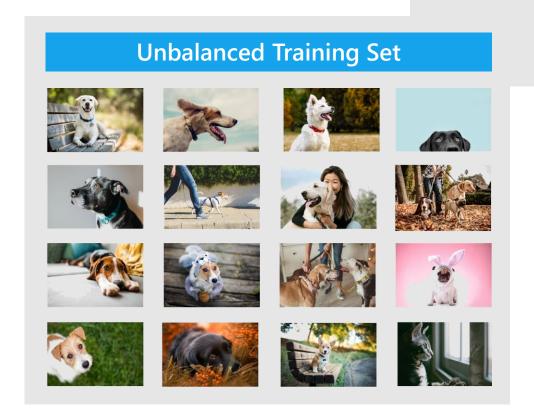


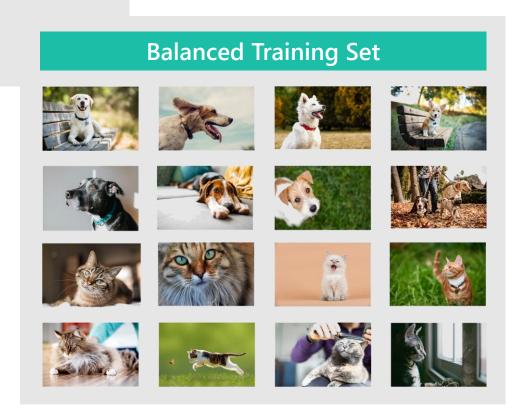


ebinar Part 2 Carollo 2023-08-01.pptx/4

ML modeling requires not only high sample size, but also meaningful range

Classification: Dog or Cat?



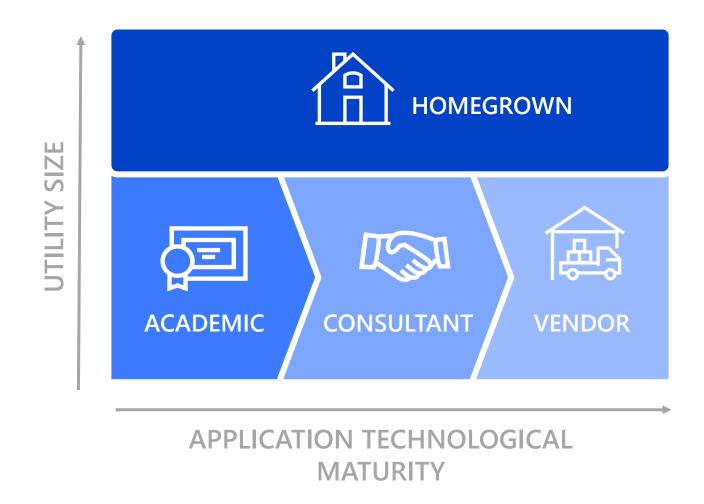


There are several partnership strategies through which to implement ML/AI

Factors such as transparency, cost, and scalability impact ML/AI implementation decisions

Transparency	Do I want to see the code?	00
Cost	Subscription fees? In-house employees(s)?	\$
Scalability	How quickly can this go from trial to full-scale?	_
Long-Term Sustainability	Stable costs? Employee turnover?	广
Cybersecurity	Are sufficient firewalls in place?	

The best way to begin and implement ML/AI depends on factors such as utility size



Acknowledgements

- Carollo Team: Andy Salveson, Amos Branch, Claire Teng (Baylor University Intern)
- Collaborating Organizations: Hampton Roads Sanitation District, Southern Nevada Water Authority, Baylor University, Jacobs
- **Funding:** Water Research Foundation (Projects #5048 and #5129)

Jacobs

Thank You!

kthompson@carollo.com

