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Presentation Outline

1) What is machine learning?

2) Why apply machine learning?

3) How does machine learning work?

4) What have been some uses of machine learning for reuse?

5) How should we go about applying machine learning or AI?



1 What is machine 

learning?
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Machine Learning (ML) is the 

study and application of 

algorithms that learn from and 

make predictions based on data

• Characteristics/Benefits

» Data-driven

» Adaptive 

» Multivariate 

» Nonlinear
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What’s the difference between ML & AI?

Artificial Intelligence

Machine Learning

Data Model Prediction Algorithm

Objective

Action to 

Achieve 

Objective
System
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Machine learning approaches

Supervised Unsupervised
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Two types of supervised machine learning

Classification

• Categorical outputs

• Is this a dog or a cat?

• Useful for alarms

Regression

• Numerical outputs

• You open 2.5 cans of tuna and 1.4 bags of 

catnip. How many cats run to your kitchen?

• Useful for process control
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Machine learning 

implementation styles

• Fault Detection – Monitoring for when an issue 

has occurred through pattern recognition on 

sensor data

• Soft Sensors – Predicting a slower or more 

expensive contaminant of concern with faster or 

cheaper data

• Digital Twin –  A model with automated, 

bidirectional data connectivity to allow both real-

time model updates and control adjustments
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Semi-autonomous operation

Artificial Intelligence

Machine Learning

Data Model Prediction Algorithm

Objective

Action to 

Achieve 

Objective

System

SCADA/HMI

Recommend 

to Human 

Operator

Human 

Operator

Semi-

Autonomous 

Operation



2 Why apply machine 

learning?
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• Predict location of lead service lines

• Predict pipes likely to leak

• Soft sensors to predict 

concentrations of contaminants

• Model GAC PFAS breakthrough

• Predict water flows

• Digital twins that respond to changes 

in temperature, turbidity, etc.

• Optimize cost, energy, and 

reliability of advanced treatment 

for reuse

What are the three biggest challenges 

facing drinking water utilities?

3. Climate Change and Water Availability

2. Water Quality and Contamination

1. Aging Infrastructure
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Tools like ML make water treatment more data-driven

Reactive Predictive

Set-It-And-

Forget-It

Adaptive

NZHerald

-2

-1

0

1

2

0 200 400 600 800 1000Time

Input

Response
-2

-1

0

1

2

0 200 400 600 800 1000Time

Input

Response

Reduce 

Downtime

Save Cost

and Energy
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Conventional alarms set fixed 

thresholds on individual variables

High for two variables?

High for one but low for the other?
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Machine learning can construct adaptive, non-

linear boundaries between normal and alarms

“Learns” TOC = 0 probably just instrument error.



3 How does machine 

learning work?
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There are lots of types of machine learning
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k-Nearest Neighbors guesses data is the same 

category as the nearest neighbors

?
?

Event Normal
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Overfit regression model

Overfitting is a key risk for machine learning

Overfitting = mistaking randomness, noise 
or error for real information 

Overfit classification model
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Machine learning requires training 

and testing to avoid overfitting
Te

st
Tr

a
in

Split 

Training / 

Testing Sets

D
a
ta

Bootstrap Cross-Validation within 

Training Set to Select Tuning Parameters

Evaluate on Testing SetOriginal Bootstrap 1 Bootstrap 2

Row # TOC Row # TOC Row # TOC

1 7.3 7 6.3 6 8.0

2 10.7 8 7.7 7 6.3

3 9.0 2 10.7 3 9.0

4 8.1 7 6.3 8 7.7

5 8.1 7 6.3 3 9.0

6 8.0 1 7.3 4 8.1

7 6.3 6 8.0 8 7.7

8 7.7 8 7.7 7 6.3

Internal 
Training 
Set

Internal 
Testing Set

Best Average Accuracy For the Bootstrapped Internal 

Testing Sets → Select These Tuning Parameters

Actual

Event Normal

P
re

d
ic

ti
o

n

Event 12 1

Normal 16 91



4
What have been some 

uses of machine 

learning for reuse?



4A
Machine learning case 

study #1: Classification 

for fault detection
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Idea conceived to 

use real-time 

sewershed 

monitoring to 

protect reuse

Sensors for broader 

variety of water quality 

parameters become 

available (optical, 

specific metals, 

automated GC/MS)

WRF 4908 reality 

strikes back: 

maintenance, 

ragging, etc.

This project: 

balance, realism, 

practical guidance 

Integrating real-time 

collection system 

monitoring approaches 

into enhanced source 

control programs for 

potable reuse

WRF 

Project 

5048
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Hampton Roads Sanitation District (HRSD)’s 

Sustainable Water Initiative for Tomorrow (SWIFT)

• Research Center 

(RC) treats 1 MGD 

• “Carbon-based” 

advanced treatment 
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Could 

machine 

learning be 

used for an 

alert system 

at SWIFT RC?
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HRSD data for machine learning 

alert system study dataset

• 30 variables 

» Mostly water quality but included total flow and ozone sidestream flow.

» 1 Raw Influent

» 13 (Plurality) Secondary Effluent 

» 8 Settled (Post Floc/Sed)

» 4 Ozonation System

» 4 Biofiltration Influent

• Hourly data frequency

• 4 time periods

1. May 20th, 2019 to June 4th, 2019 (Training Set)

2. June 15th, 2019 to June 21st, 2019 (Training Set)

3. May 25th, 2020 to June 2nd, 2020 (Training Set)

4. October 17th, 2020 to October 21st, 2020 (Testing Set)

• 3 Industrial Discharge Events (in Time Periods #2, #3, and #4)

Location Variable Units

Raw Wastewater Influent Conductivity μS/cm

Secondary Wastewater

Effluent

Flow gpm

Total Nitrogen mg/L

Total Inorganic Nitrogen mg/L

Total Organic Carbon mg/L

Nitrite mg/L

Nitrogen Oxides mg/L

Nitrate mg/L

Ammonia mg/L

Conductivity mS/cm

UV Transmittance %

Turbidity NTU

pH

Temperature °C

Settled Water

UV Transmittance %

Monochloramine mg/L

Ammonium mg/L

Total chlorine mg/L

Redox potential

Total Organic Carbon mg/L

Total Nitrogen mg/L

Free Ammonia mg/L

Ozonation System

Ozone Dose lbs/day

Ozone Sidestream Flow gpm

Ozone Residual Setpoint

Ozone Residual mg/L

Biofiltration Influent

UV Transmittance %

Total Chlorine mg/L

pH

Redox potential mV
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Benchmarking against fixed thresholds

Threshold set to maximum or minimum normal value within training set

Training Testing

Min. 
Normal
Inf. UVT 
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Screening results

• 35 models screened

• Six selected for in-depth 
evaluation

» Two highest training set accuracy

» Two highest test set accuracy

» Two highest event sensitivity

▪ Event sensitivity = predicted 
event when true answer was 
event

Model Abb.

Training Set 

Accuracy

Testing Set

Accuracy

Event 

Sensitivity

Boosted Tree bstTree 99% 95% 89%

Cost-Sensitive C5.0 C5.0Cost 99% 97% 86%

Oblique Random Forest 

with Support Vector 

Machines

ORFsvm 99% 96% 82%

Penalized Logistic 

Regression
plr 100% 88% 50%

Random Forest Rule-

Based Model
rfRules 98% 54% 100%

Support Vector 

Machines with Radial 

Basis Function Kernel

svmRadial 99% 83% 25%

1st highest out of 35       2nd highest out of 35
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Boosted Tree (bstTree)

• Boosted Tree (bstTree) was the most accurate 

model after optimization

• Testing set accuracy = 99.3%

• 1 false negative, 0 false positives

• Would have detected event in about 1 hour

Training Set Accuracy 99.3%

Testing Set Accuracy 99.2%

Testing Set Balanced Accuracy 98.2%

Testing Set Cohen’s Kappa 0.976

Testing Set Event Sensitivity 96%

Testing Set False Positives 0

Time until 1st Detection (hr) 1

Preprocessing None

Variables Used 13

Tuning Parameters

maxdepth=3,

nu=0.1,

mstop=150
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Fixed thresholds results

Training Testing

Min. 
Normal
Inf. UVT 

• Among Fixed Thresholds, Influent UVT had 

highest test set accuracy, 98.3%

• Only one more error compared to best 

Machine Learning model
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Conclusions

• Time until first 

detection ~1 hour.

• However, only better than Inf. 

UVT threshold by about

1% with the data used for 

this proof-of-concept.

• More data (especially if 

included 4+ industrial 

events) would improve both: 

» The accuracy of the machine 

learning models

» The confidence of the 

comparative evaluation

Thompson, K.A., Branch, A., Nading, T., Dziura, T., Salazar-Benites, G., Wilson, 

C., Bott, C., Salveson, A., Dickenson, E., 2022. Detecting Industrial Discharges 

at an Advanced Water Reuse Facility Using Online Instrumentation and 

Supervised Machine Learning Binary Classification. Front. Water 4, 1014556.

For more information:

• The best machine learning model (bstTree) performed better than 

any fixed threshold with a testing set accuracy of 99.3%.

• Zero false positives over 5-day testing set.



4B
Machine learning case 

study #2: Regression 

for soft sensor
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Demonstration of 

innovation to improve 

pathogen removal, 

validation, and/or 

monitoring in Carbon 

Based Advanced 

Treatment (CBAT) for 

potable reuse

WRF 5129
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Current regulatory paradigm:

Disinfection = Concentration × Time (CT)

1,000,000

100,000

10,000

1,000

100

10

1

0
0.0      1.0           2.0 3.0      4.0          5.0

Total 

Coliform 

(cfu/100 

mL)

CT (mg-min/L)
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Not an ideal relationship
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O3:(TOC+NO2) – a better way to dose ozone
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One disadvantage – TOC measures more 

slowly than ozone residual 

Chen, E.C., et al. 2020. Ozone Sci. Eng. 42, 213–229. 
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ML predicts TOC to enable rapid 

TOC-based ozone dosing

• Random Forest

• Root Mean Square Error 

= 0.171 mg/L



5 How should we go about 

applying ML/AI?
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Have a clear problem statement

• What are you trying to predict?

• How will that prediction be used?

• What information would feed the prediction?

» Do you have that information?

• Would a simpler tool get the job done?

Yishi Zuo, 2021

https://www.yishizuo.com/dont-be-a-hammer-looking-for-a-nail/
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Establish appropriate benchmarks, metrics, and goals

xkcd.com
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ML is best applied to data rich 

environments and complex problems
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ML modeling requires not only high sample 

size, but also meaningful range  

R² = 0.917

0

50

100

150

200

0 50 100 150 200

R² = 0.2374

0

50

100

150

200

0 50 100 150 200
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ML modeling requires not only high sample 

size, but also meaningful range

Classification: Dog or Cat?

Unbalanced Training Set Balanced Training Set



C A R O L L O    /    4 4

u
p

d
a
te

fo
o

te
r0

3
2
3
.p

p
tx

/4
4

O
C

W
D

 W
e
b

in
a
r 

P
a
rt

 2
 C

a
ro

ll
o

 2
0
2
3
-0

8
-0

1
.p

p
tx

/4
4

There are several partnership strategies 

through which to implement ML/AI

ACADEMIC CONSULTANT VENDOR

HOMEGROWN
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Factors such as transparency, cost, and scalability 

impact ML/AI implementation decisions

Transparency Do I want to see the code?

Cost
Subscription fees?

In-house employees(s)?

Scalability
How quickly can this go 

from trial to full-scale?

Long-Term 

Sustainability

Stable costs?

Employee turnover?

Cybersecurity Are sufficient firewalls in place?

$
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The best way to begin and implement ML/AI 

depends on factors such as utility size

ACADEMIC CONSULTANT VENDOR

HOMEGROWN
U

T
IL

IT
Y

 S
IZ

E

APPLICATION TECHNOLOGICAL 

MATURITY
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