Visualizing Levee Failures and Performance through 2D Techniques
TFMA Spring Conference
May 29, 2014

OVERVIEW
- Project Background
- Developing the Model
- Simulations Types and Results
- Integration with EAP

EMERGENCY ACTION PLAN
- EAP needed in case of a levee failure
- Modeling was used to support development of EAP
- Typical EAP may have as few as two flooding sources
- This case was not so clear cut in terms of flooding sources
CONTROL STRUCTURES

INTERNAL DRAINAGE

REASONS FOR ADVANCED MODELING

- Complex system; multiple interactions
- Multiple Scenarios:
 - Historic events
 - System response to various storms
 - Pump station failure
 - Levee breach
ADVANTAGES OF ADVANCED MODEL

• Comprehensive model of the system
 – Only one assumed boundary condition
 – Connectivity between all elements
 – 2D flow paths through mesh

• Ease of understanding output
 – 2D animation replays
 – Time-series data
 – Results points

• Analyze multiple different scenarios
 – Historic Events
 – Pump Station Failure
 – Breach Analysis

WHY INFOWORKS ICM?

• Large 2D area (5,000 acres)
• Variable element area mesh
• Breach analysis capabilities
• GPU Processing (Simulations are faster)

MODEL DEVELOPMENT

• Hyc
• Hys
PROBLEMS WITH EXISTING MODELS

- Assumed boundary conditions
- No connectivity
- No way to account for undefined flow paths

CONVERTING TO ICM

1D COMPONENTS COMBINED
2D COMPONENTS

• Road buffered from TNRIS Centerline
 – Roads as Mesh Zone
 – Finer mesh triangles
• Roughness Zones determined from Aerial Photos
• Elevation data from LIDAR

1D/2D COMPONENTS COMBINED

CHALLENGES BUILDING/RUNNING THE MODEL

• Size of the study area
 – ±5,000 acres
• Mass balance (junctions, voids)
• Meshing Errors
• Initialization
• Operating Procedures
• Elevation datum
Simulation Types and Results

Determining Exterior Level of Protection

Historic Events

- Mother’s Day Flood 2012 (Internal)
 - 5-8 inches of precipitation in area in 12 hours
 - Calibrated rainfall
 - Validated the model
- Christmas Flood 1991 (Brazos River)
REGIONAL EVENT

- Not in design criteria, but good to understand

- System response to regional 100-year event including:
 - Tailwater elevations
 - Gravity outfalls
 - Pump operations

REGIONAL EVENT EXAMPLE

- Worst-case scenario
- No way to evacuate water

PUMP STATION FAILURE (BEYOND DESIGN CRITERIA)
PUMP STATION FAILURE (BEYOND DESIGN CRITERIA)

LEVEE BREACH ANALYSIS

- Breaches modeled in two different ways, based on location
 - River Bank Elevation
 - Control individual bank stations
 - Variable Width Weir + 2D Outfall to mesh
 - Control width of weir
- Controlled with Real-Time Control (RTC)
 - Breach geometry defined in FEMA document
 - Breach timing defined by FNI

MODELED BREACH LOCATIONS

- Breach locations not indicative of potential failure
- Concept of “Representative Levee Reach”
Representative Levee Reach

Breach Location B03
- Largest inundation extents of the 6 locations
- Assumes other levees have been compromised
- Flows recirculated by standard pump operations

100-Year Breach B03 (Beyond Design Criteria)
Levee breach analysis was critical for the EAP
Advanced modeling needed in this case
Value added by using the model for other analyses
Client now has a modeling framework that can be modified
 - CIP project planning
 - Channel modification
 - Levee improvements
 - Pump improvements
 - Add storm sewer lines
 - Water quality modeling – sediment
 - Evaluate benefit from stormwater BMPs
 - Economic assessment

Questions??