Overview

- Overview of TXRAM
- Objectives of TXRAM
- Stream Metrics
- Local application in Carrollton to Furneaux Creek Stream Segment 1 Restoration / Enhancement
- Updates

TXRAM Overview

USACE - Fort Worth District
- No standard assessment method prior to 2011
- HDR selected to develop assessment method
 - Review of existing methods
 - Develop wetlands and streams modules
 - Lead agency field review
TXRAM Objectives

- Rapid, repeatable, field-based method
- Measure multiple observable metrics
- Single score of condition
- Developed to fit USACE regulatory program

Streams Module

- Stream Assessment Reach (SAR)
- Stream types
 - 3 based on water source and duration of flow
 - Perennial, intermittent, and ephemeral

Streams Module

<table>
<thead>
<tr>
<th>Core Elements</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Condition</td>
<td>Floodplain Connectivity</td>
</tr>
<tr>
<td></td>
<td>Bank Condition</td>
</tr>
<tr>
<td></td>
<td>Sediment Deposition</td>
</tr>
<tr>
<td>Riparian Buffer Condition</td>
<td>Riparian Buffer</td>
</tr>
<tr>
<td>In-stream Condition</td>
<td>Substrate Composition</td>
</tr>
<tr>
<td></td>
<td>In-stream Habitat</td>
</tr>
<tr>
<td>Hydrologic Condition</td>
<td>Flow Regime</td>
</tr>
<tr>
<td></td>
<td>Channel Flow Status</td>
</tr>
</tbody>
</table>
Streams Module

- Floodplain Connectivity

1 3 5

Streams Module

- Bank Condition

1 3 5

Streams Module

- Sediment Deposition

1 3 5
Streams Module

- Riparian Buffer Condition

Streams Module

- Substrate Composition

Streams Module

- In-stream Habitat
Streams Module

- Flow Regime

Streams Module

- Channel Flow Status

City of Carrollton
Furneaux Creek Segment 1
City of Carrollton
Furneaux Creek Segment 1

- Property History
 - Unstable banks and excessive deposition
 - S-shaped region endangering roadway
- City acquired Segment 1 area with following objectives:
 - Identify unstable channel areas
 - Restore stream to a stable condition
 - Enhance potential for future development
- Use TXRAM to enhance ecological value and accelerate permitting process

Initial Study Phase – Main Channel

EXISTING CONDITIONS

UNSTABLE BANKS

HEAVY SEDIMENT DEPOSITION

Initial Study Phase – Northern Tributary

EXISTING CONDITIONS

30' VERTICAL BANK FAILURE

STREAM HEAD CUT EATING INTO ENERGY DISSIPATORS
Proposed Design – Overall Grading Plan

- J-Hook Design
- Grade Controls
- Jersey Vane
- Aids in long term stream stability
- Stream Access for Maintenance

Innovative Design – In-Stream Habitat Features

- J-Hook Design
- Grade Controls
- Jersey Vane
- Aids in long term stream stability
- Stream Access for Maintenance

Design Innovation

- J-Hook & Jersey Vane Concept and Design – Main Channel
 - HDR created the J-Hook concept based on jersey barrier and rock riprap
 - Ideal element to promote habitat features / controls bank erosion
 - Aids in long term stream stability
Furneaux Creek J-Hook Installed

Northern Tributary – Design and Application
- Cross Vane Concept and Design – Northern Tributary
 - Provides grade control & habitat features
 - Establishment of bankfull benches

City of Carrollton Furneaux Creek Segment 1

Existing vs. Improved Channel Condition
Furneaux Creek J-Hook Installed

Native Revegetation Plan

MSE WALLS AND NATIVE PLANTS

"Ecological lift" for NWP 27 Demonstrated
Furneaux Creek
Section 404 Permitting & TXRAM

- **TXRAM Stream Metrics**
 - Channel Condition
 - Floodplain Connectivity - 1
 - Bank Condition - 1
 - Sediment Deposition - 2
 - Riparian Buffer Condition
 - Left Bank – 1.2
 - Right Bank – 1.5
 - In-Stream Condition
 - Substrate Composition – 3
 - In-Stream Habitat – 1
 - Hydrologic Condition
 - Flow Regime – 4
 - Channel Flow Status – 3

Metric scores increased by design of the project:

<table>
<thead>
<tr>
<th>MAIN CHANNEL</th>
<th>Core Element</th>
<th>Metric</th>
<th>Proposed</th>
<th>Existing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Condition</td>
<td>Floodplain Connectivity</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bank Condition</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment Deposition</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian Buffer Condition</td>
<td>Riparian Buffer (Left Bank)</td>
<td>1.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Riparian Buffer (Right Bank)</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Stream Condition</td>
<td>Substrate Composition</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>In-Stream Habitat</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologic Condition</td>
<td>Flow Regime</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Channel Flow Status</td>
<td>Overall TXRAM Score</td>
<td>47</td>
<td>08</td>
<td></td>
</tr>
</tbody>
</table>

Section 404 Permitting Update

- **Stream Mitigation Method**
 - In-stream channel work
 - Permittee-responsible mitigation requires site protection

- **Waters of the U.S. – Proposed Rule**
 - Not currently implementing
 - Could increase USACE jurisdiction (e.g., drainage channels and detention pond)

- **TXRAM Update - TBD**
Conclusions

Project objectives were met:
- TXRAM accelerated NWP 27 404 permit
- Stream restored to a stable condition
- Potential for future development enhanced
- Land acquisition costs recovered
 - Floodplain Reclamation added 12 acres
- Green belt (trail and bridge)