What is a Backflow Preventer?
- Backflow means the undesirable reversal of flow upstream
- A Backflow Preventer is a device designed to prevent backflow from happening
 - At stormwater detention basin outfall to preserve detention capacity
 - At downstream end of a water quality pipe to detain captured water quality volume
 - At outfall of a storm sewer to prevent channel flow from going upstream thru the storm sewer
 - At coastal area to protect upland against high tide and storm surge
Typical Backflow Preventers in HCFCD Projects

- Cast Iron / HDPE Flap Gates
- TideFlex Check Valves
- Inline Check Valves

Cast Iron / HDPE Flap Gates

- Commonly used in projects
- Based on material, subject to vandalism
- Heavy – Need a crane for maintenance operation

Tideflex Check Valve

- Susceptible to damage
- Maintenance access
- Exposure to site conditions
Inline Check Valves

- Can be expensive
- Can be used in new and existing pipes
- Customizable
 - Opening/closing pressures
 - Valve materials

Source: WaPro and Municipal Valve & Equipment Company

Case Studies: Lauder Stormwater Detention Basin

- Background
- Flap Gate Options and Comparison
 - Material
 - Type

The project is being constructed in phases:
- Phase 1 is already complete
- Phase 2 is under design
Flap Gate Options and Comparison

- Material
 - Cast Iron
 - High Density Polyethylene (HDPE)
 - Rubber / EPDM (ethylene propylene diene monomer rubber)
 - Silicone
 - Polyurethane

- Type
 - End of pipe
 - Inline

Flap Gates Comparison

- Evaluated in July 2017 for Lauder SWDB Phase 1 design
- Focused on evaluation of:
 - Rubber Duckbill Check Valve
 - HDPE Flap Gate
 - Inline Check Valves
- Contacted several vendors when making comparisons

HDPE Flap Gates

- Lightweight
- Corrosion Resistant
- Low Opening Pressure
- Lower cost:
 - 48” estimated: $12,600.00
 - 48” in bid: $5,660.00
- Long service life:
 - 100 years expected

Source: ROSS Valve, WaPro
Inline Check Valves

- Flexible
- No crane needed for inspection
- Opening Pressure:
 - At least one inch
- Lower cost:
 - 48" rubber check valve: Vendor estimated: $34,500.00
- Service life:
 - UV concern
 - 30 years expected

Source: Red Valve Company, Inc.

Location of Flap Gates in Phase 1

- Outfall to Greens Bayou
- Diversion structure from P136-00-00 for Water Quality

Flap Gates Designed for Phase 1

- HDPE flap gates to prevent backflow from Greens Bayou and preserve detention capacity
- Access path and platform designed for crane operation to maintain flap gates
Flap Gates Designed for Phase 1

- Modified headwall apron to allow flap gate operation
- Added a 5" steel cross pipe to allow manual lifting of flap gate without a crane

K = Top of Headwall to Top of Outfall Pipe
H = Headwall Height

Flap Gates Designed for Phase 1

- Water quality pipes to retain captured water quality volume

Location of Flap Gate in Phase 2

- HDPE flap gates to prevent backflow from Greens Bayou and preserve detention capacity
Case Studies: Z100-X280 Projects

- Background
 - Inline Valve Evaluated and Design in P500-01-00-Y008
 - K129-00-00-X011 Analysis of Flap Gate Needs

General Drainage System Repairs North Projects

- Z100-00-00-X280

Repair or Re-design

- Repair to restore the channel to latest design?
- Redesign to utilize full ROW with larger channel?
- Permitting concern
- Repair erosion
- Desilt to restore capacity
- Additional armoring
- Restore/New backslope swale/interceptor system
Channel Pipe Repairs

- HCFCD 2019 Guidelines on Replacing Failed CMPs
- New manhole required at HCFCD ROW

P135-00-00-X006

- Repair of failed concrete channel lining or retaining wall
- Bottom scour
- Rotational slope failure

Case Studies:
Z100-X280 Projects

- Inline Valve Evaluated and Design in P500-01-00-Y008
Nonfunctioning Backflow Preventer

- 60" backflow preventer
- Wooden and narrow channel

Tideflex Duckbill Check Valve

- Susceptible to damage
- Improper installation
- Material fatigue

Inline Check Valves

- Components
 - Valve housing
 - Valve membrane
 - Mounting hardware
- Material
 - EPDM
 - Silicone
 - Polyurethane

Source: https://www.redvalve.com/industries/stormwater-and-sewers/backflow-prevention

Inline Check Valves

- Design Considerations
 - Opening Pressure
 - Closing Pressure
 - Maximum Back Pressure
 - Material selection
 - Pipe end treatment

Case Studies: Z100-X280 Projects

- K129-00-00-X011 Analysis of Flap Gate Needs

K129-00-00-X011

- Flap gate found missing in Nov. 2019
- Conducted an analysis to determine if flap gate needed to be replaced
No H&H models available

Conducted frequency analyses using flood elevations at K100-00-00 HEC-RAS XS near K129-00-00 Confluence

Level of service changing from about 11 years without a flap gate to 106.6 years with a flap gate

Recommended to re-install a flap gate

Level of Service without a Flap Gate

Lowest ground elevation near Grand Valley Drive = 94.9 ft.

Lessons Learned

HCFCD Backflow Preventer Guidance

Specifications

HCFCD Backflow Preventer Guidance

End-of-Pipe Flex Gate

Flap Gate

In-line Flex Gate

Three types of backflow preventor mentioned:
Thank You!

Isabel S. Fung, HCFCD
346-286-4127, isabel.fung@hcfcd.hctx.net

Fedelis "Oke" Atatah, HCFCD
346-286-4303, Fedelis.Atatah@hcfcd.hctx.net

Yu-Chun Su, LAN
713-821-0390, YCSu@lan-inc.com

Julius C.U. Serrano, LAN
713-821-0238, JCSerrano@lan-inc.com

Questions