DRAINAGE REVIEWS
HOW TO DO THEM AND WHAT TO LOOK FOR
MARCH 10, 2022
HALFF ASSOCIATES, INC.
RYAN LONDEEN, PE, CFM
ANDREW MOORE, PE, CFM

GOAL

Help agencies identify frequent drainage design mistakes in order to improve reviews and—in turn—help reduce loss of life and property.
GENERAL CONSIDERATIONS

TYPICAL SUBMITTAL REQUIREMENTS
- Narrative Report
- Tables
- Exhibits
- Hydrologic calculations
- Hydraulic calculations
- Engineering models
- No Adverse Impact Statement

- Setting up a drainage specific submittal checklist can ensure all information needed for the drainage review is provided.
- Ensure nothing is left out the report. Don’t assume you can open the model in the future.

DRAINAGE CRITERIA
- Design as well as study methodology and calculations must follow drainage criteria requirements.
- Avoid engineering for the designer.
- Ensure criteria is continually updated to reflect latest information, practices, and technology.

- Can your comments be backed up by the criteria?
- Is the criteria up-to-date and thorough enough to facilitate your review?

- Have entire engineering team READ the criteria and be familiar with it.
- Ask questions prior to submitting when different challenges arise.
- Provide documentation for variance requests.
GENERAL CONSIDERATIONS

ADVERSE IMPACTS
- Water Surface Elevation change < 0.00'
- Increase in flow rate leaving site
- Changes in flow patterns / velocities
- Changes in runoff volume?
- Use of runoff / floodplain storage
- Specifics vary by region / entity
- Master planning and phasing

- Clear documentation of impacts with drainage regulations
- Review models to check no adverse systemic and factors

Reviewers: Engineers:

GENERAL CONSIDERATIONS

MODELING VS DESIGN
- Drainage model should match what is shown in the preliminary or final design
- The modeling results should match the intent of the design
- Design is changed due to observed field conditions

- Clear documentation of model assumptions and simplifications within the drainage report
- Design is changed due to observed field conditions

Reviewers: Engineers:

DRAINAGE CONSIDERATIONS
DRAINAGE CONSIDERATIONS

HYDROLOGY
- Hydrologic methodology varies by watershed size and needs
 - Peak flow rates = used for conveyance system design
 - Hydrographs = used for routing or large basins
 - Sensitive to Infiltration and Time of Concentration changes
 - Pre-project to Post-project consistency is important
 - Check methodology used against criteria
 - Ensure hydrograph method is being used if complicated routing or wet weather conditions exist
 - Ensure consistency pre to post

ONSITE CONVEYANCE SYSTEMS
- Storm sewer, inlet, roadside ditches, etc.
- Design storm is typically contained within drainage easements, roadway, or within underground systems
- Extreme event (100-yr event) should be kept within public ROW and drainage easements
- Excessive ponding should be avoided (need to ensure emergency vehicles always have access)
 - Has inlet capacity been calculated?
 - How is the extreme event being handled properly?
 - Is the starting WSEL correct?
 - Adequate maintenance access?

DETENTION
- Impervious vs. Floodplain Mitigation = Keep Separate!
- Impervious Detention Rates = 0.45 – 0.75 ac-ft
 - Simple Approach vs Routing
 - Beat the Peak
 - Public Perception
 - Does the detention rate make sense?
 - Who is going to maintain?
 - Is the tailwater assumption correct?
 - Consider public perception

Floodplain mitigation and detention mitigation cannot overlap!
DRAINAGE CONSIDERATIONS

OUTFALLS
- Outfalls of prospective detention and drainage facilities impacting property if not designed properly
- Point discharge vs. sheet flow
- Private vs. Public Property
- Public Perception
- Erosive velocities into the downstream channels
- Sizing typically dependent on pre-project flow rates (important!)

- Consider all aspects of impacts: velocities, erosion, discharges, flow patterns
- Is the tailwater assumption correct? (critical)
- Attempt to drain to public right of way
- Is it back how you fixed it?

HALFF

DRAINAGE CONSIDERATIONS

MAJOR CHANNELS
- Trapezoidal geometry is standard
- Concrete vs. Grass
- Low-flow pilot channel
- Can result in loss of floodplain storage
- Can result in increased flow rates downstream
- Potential environmental impacts
- Benching becoming more common: preserve impacts to floodplain storage and environment

- Is floodplain storage being removed?
- What are downstream impacts?
- What are environmental impacts?
- Can natural conditions be preserved? (park, trails, etc.)
- Was benching considered?

HALFF

DRAINAGE CONSIDERATIONS

CULVERTS
- Boxes or pipes
- Concrete vs. Plastic
- Design storm (or 100-year)?
- High headlosses
- Change in velocity cause erosion and sedimentation

- Do high head losses cause impacts to neighboring properties?
- How high will the road carry?
- Is erosion being taken care of?
- Are design assumptions correct?
- What's going on downstream (TW)?
- Concrete pipes are not the most the most flash proof than plastic

HALFF
DRAINAGE CONSIDERATIONS

TAILWATER
- During the end of the modeling should account for tailwater impacts of receiving channels
- Tailwater can affect the size of channel/detention/ulvert
- Size of receiving system should be considered. Joint probability for large drainage area differences
- Static or variable (modeled)?

Annotations:
- Criteria should include guidance on anticipated downstream conditions
- Top of Pipe, static WSEL, or variable WSEL?
- Is your pond filling up too soon by TW?

DRAINAGE CONSIDERATIONS

MAINTENANCE
- Regulations based on width and slope are often driven by the ability of the maintenance crews to access the sites
- Widths are required to get equipment on the site
- Variances are often wanted to maximize space within the property

Annotations:
- Coordinate with maintenance groups to understand complications of the variances
- Have maintenance crews review criteria and recommend changes
- Coordinate with maintenance groups to understand complications.
- Follow maintenance driven criteria and avoid "shortcuts"

DRAINAGE CONSIDERATIONS

OFFSITE FLOWS
- Property adjacent to the proposed development may drain through the development
- Offsite flow should be accounted for with the design of local roads
- Homebuilders typically do not consider offsite drainage when bringing in fill for houses

Annotations:
- Verify offsite flow patterns with topographic maps
- Existing drainage along not exactly match the proposed parcel area (generally inaccurate)
- Summarize the offsite flows to ensure no impacts or from the development
- Discuss how the drainage infrastructure incorporates offsite flow within the report

Reviewers:
Engineers:
DRAINAGE CONSIDERATIONS

FLOODPLAIN
- Floodplain Regulations
- Conveyance (Upstream Impacts) ~ 0 rise
- Storage (Downstream Impacts) ~ 1:1 mitigation
- Steady (conveyance) vs Unsteady (conveyance and storage) Modeling
- Drainage Impact Analysis ~ H&H Modeling
- GSLIM vs LOMR
- FEMA

Questions:
- Is a floodplain permit required?
- Will a CLOMR or LOMR be required?
- Is the modeling appropriate?
- Is fill being mitigated?
- Can natural conditions be preserved? ~ Park, trails, etc.
- Consider both upstream and downstream impacts.
- FEMA and FPA regulations?

CONCLUSION

KEY TAKEAWAYS
- Start with big picture questions and move into the details.
- Before getting into the model review, does the overall approach make sense?
- Do the assumptions make sense?
- Are there "red flags" or "oddities"?
- Do the results fit within typical ranges (e.g., detention rate greater than 0.45 ac-ft/ac)?
- Focus on the critical pieces of the design.
- Don't forget to consider the entire project life (construction and maintenance as well as phasing).
- Be familiar with the latest modeling software ~ technology is rapidly changing!
- Regulatory criteria is your primary support ~ it's important to keep it up-to-date!

HALFF