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• Develop projected future rainfall frequency grids for Texas  by incorporating 
information from historic trends and climate model projections. 

• Improvements to existing Atlas 14 data.

• Gap Filler between Altas 14 and Atlas 15.

• Products can be utilized for future flood 
      mapping, planning, hydraulic infrastructure 
      design projects, and in flood mitigation efforts.

Project Overview
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Additional review from subject matter experts from federal agencies like NOAA, USGS and 
USACE will be requested and addressed before the final report and data is shared for public use.
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Project Timeline

Project Initiation: Fall 2022

Project Draft Report: Fall, 2024

Final Report and Data Dissemination: Spring 2025
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• 2018: NOAA Atlas 14: 
Official estimates of extreme 
rainfall risk  (100-yr events, 
etc.)

• Analysis includes 2017 
rainfall

• Previous analysis dates from 
1960s

• Old analysis (contours) and 
change (shading) in 1-day 
100-yr rainfall amounts 
shown at right
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From Modernizing Probable Maximum Precipitation, NAS (2024)
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From Projected Changes 
in the Runoff Spectrum in 
Texas,
John Nielsen-Gammon 
and William Baule, 2024
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From Jorgensen and Nielsen-Gammon (2024) J. Hydromet.
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Coming: NOAA Atlas 15

• Volume 1: Regional Frequency Analysis including 
nonstationarity

• Volume 2: Projections
• Issues with NOAA Atlas 15:
– RFA includes same spatial footprint for all moments
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From Jorgensen and Nielsen-Gammon (2024) J. Hydromet.
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Nonstationarity

Return level exceedance counts ↑ 
(Wright et al., 2019)

Limited Observations

Short durations with limited records
(Perica et al., 2018)

Parametric Uncertainty

Nonstationarity → More parameters → 
Uncertainty ↑ (Serinaldi and Kilsby, 2015)

Sampling Variability

Different trend estimates at nearby 
stations (Fagnant et al., 2020)
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Coming: NOAA Atlas 15

• Volume 1: Regional Frequency Analysis including nonstationarity
• Volume 2: Projections
• Issues with NOAA Atlas 15:
– RFA includes same spatial footprint for all moments

• Higher-order moments require larger sample size

– Separate treatment of historical trends and future projection
• Observed trends inform our knowledge of future trends (are models accurate?)
• Model projections inform our knowledge of current trends (is history noisy?)
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Coming Sooner: TRAIN
(Texas Rainfall Analysis Incorporating Nonstationarity)

• Sponsor: Texas Water Development Board
• Foundation: NOAA Atlas 14 data
• Additional data
– Longer period of record, shorter durations

• Spatial statistics
– No regionalization; automatic consistency across durations

• Climate model projections
• Merged analysis of nonstationarity
• Techniques and results may improve NOAA Atlas 15
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Data
• NOAA Atlas 14
• Global Historical Climatology Network – Daily
• United States Climate Reference Network – 5-minute
• Cooperative Network – Hourly
• Automated Surface Observing System – 5-minute
• Jefferson County Drainage District 6 – 5-minute
• Harris County Flood Control Network – 5-minute
• Oklahoma Mesonet – 5-minute
• West Texas Mesonet – 5-minute
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Quality Control
• Outlandishly small numbers
• Outlandishly large numbers
• Statistically weird storms
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Climate Reference 
Network
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Automated Surface 
Observing System 
(airports): higher 5-
minute values are more 
spiky (!)
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Harris County FCD: 
not merely 
spikiness, but pure 
spikes
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Black: Harvey
Red: Imelda

Challenge (not 
solved): sparse 
but spatially 
correlated 
sampling of tails

20

Spatially Varying and Duration Dependent Covariates Model

Bayesian Hierarchical Model for annual maximum precipitation y for 
station s, year t, and duration d:

y(s,t,d)~GEV(μ(s,t,d),σ(s,t,d),ξ(d))

1. Nonstationarity: parameters conditioned on time-varying covariates

2. Spatially varying parameters: latent spatial fields
3. Duration-dependent GEV distributions (dGEV): learn equations that 
describe GEV parameters for all durations simultaneously
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Spatially Varying and Duration Dependent Covariates Model

CO2 concentration recorded at Mauna 
Loa Observatory in Hawaii (NOAA) Correlation between logCO2 and 

1d annual maximum series

Process-informed nonstationary models condition GEV parameters 
𝜙(s,t) on time-varying covariates x(t)

𝜙(s,t)=α+β(s)x(t)
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Spatially Varying and Duration Dependent Covariates Model
Spatially varying parameters are described with latent spatial 
fields (i.e. Moran basis functions)

Example basis functions for the study area – a total of 100 basis functions are used
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Spatially Varying and Duration Dependent Covariates Model
Duration-dependent GEV (dGEV) equations describe GEV 
parameters at all durations simultaneously from a few hyper-
parameters

Shorter durations have limited 
observation records
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Methodology comparison with Atlas 14

Atlas 14 Spatially Varying and 
Duration Dependent 
Covariates Model

Stationarity Stationary Process-Informed 
Nonstationarity

Regionalization Region of Influence Latent spatial fields (i.e. 
Moran basis functions)

5m/10m estimates Constant scales from 15m 
estimates

Duration-dependent GEV

Estimation L-moments Bayesian inference
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Spatially coherent return level estimates

(T) 10 and (B) 100 year return level estimates in 2022 at (L) 15 minute (M) 1 hour 
(R) 1 day extreme precipitation. Preliminary results.
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Trends intensify at longer durations

Percentage change for (T) 10 and (B) 100 year return level estimates from 1980 to 2022 
at (L) 5 minute (M) 1 hour (R) 1 day extreme precipitation. Preliminary results.
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Raw 15-minute observed trends in major cities

5 (orange) and 10 (blue) year return level estimates for 15-minute precipitation in 4 Texas 
cities. Dashed lines use a mid-range projection for CO2. Preliminary results.
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Raw 1-day observed trends in major cities

10 (orange) and 100 (blue) year return level estimates for 1 day precipitation in 4 
Texas cities. Dashed lines use a mid-range projection for CO2. Preliminary results.
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Summary and Status
• A TRAIN is coming
• Complete:

– Input data collection
– Quality control
– Statistical algorithm implementation
– Climate model projection analysis

• Nearly complete:
– Historical data analysis

• To be done:
– Merger of historic and projected trend information using planar trend fits
– Production of time-dependent return frequency grids
– Review and release
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Take-Home Messages
• A TRAIN is coming which delivers:

– Future rainfall frequency grids for Texas
– Improved present-day rain frequency grids

• Encourage the use of this data for:
– future flood risk mapping
– planning
– hydraulic infrastructure design projects

– flood mitigation efforts

• Reviews from federal agencies like NOAA, 
 USGS, and USACE will be requested and
 addressed before sharing for public use.
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Contact Us

John Nielsen-Gammon: n-g@tamu.edu

James Doss-Gollin: jdossgollin@rice.edu
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