Developing Future Rainfall Frequency Grids for the State of Texas

John Nielsen-Gammon-Texas A&M University, College Station Rewati Niraula-Texas Water Development Board, Austin James Doss-Gollin-Rice University Saul Nuccitelli-Texas Water Development Board, Austin

TFMA Technical Conference August 28, 2024, Dallas, Texas

TEXAS WATER

TEXAS A&M

1

Project Overview

- Develop projected future rainfall frequency grids for Texas by incorporating information from historic trends and climate model projections.
- Improvements to existing Atlas 14 data.
- Gap Filler between Altas 14 and Atlas 15.
- Products can be utilized for future flood mapping, planning, hydraulic infrastructure design projects, and in flood mitigation efforts

TEXAS WATER

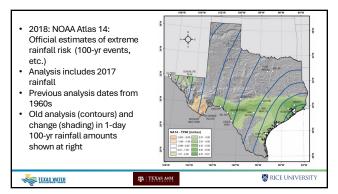
Æ | TEXAS A&M

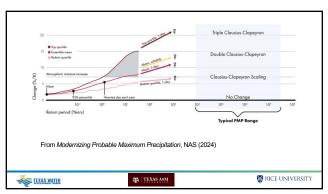
😽 rice university

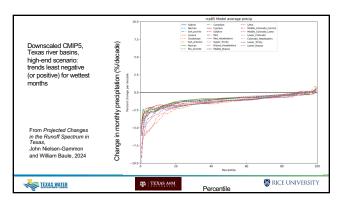
2

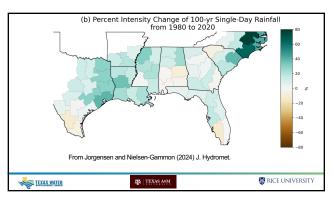
Project Team

Core Research Team	Research Review Panel Members	TWDB Project Team
John Nielsen-Gammon Texas A&M University	Andy Yung Walter P Moore	Saul Nuccitelli
James Doss-Gollin Rice University	Blake C. Kronkosky StateTech Engineering	Srikanth Koka
William J Baule Texas A&M University	Todd Ward Harris County Flood Control District	Rewati Niraula
Yuchen Lu Rice University		

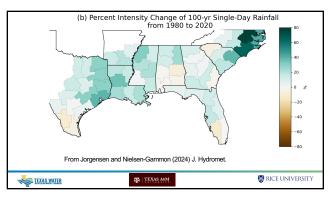

Additional review from subject matter experts from federal agencies like NOAA, USGS and USACE will be requested and addressed before the final report and data is shared for public us

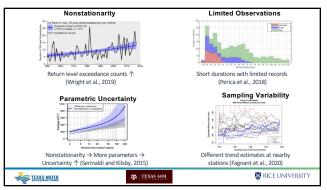

TEXAS WATER


Æ | TEXAS A&M


RICE UNIVERSITY

8


Coming: NOAA Atlas 15


- Volume 1: Regional Frequency Analysis including nonstationarity
- Volume 2: Projections
- Issues with NOAA Atlas 15:
- RFA includes same spatial footprint for all moments

=	
	TEXAS WATER
120	BEVELOPMENT BOARD

TR | TEXAS ARM.

RICE UNIVERSITY

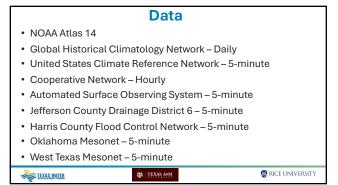
11

Coming: NOAA Atlas 15

- Volume 1: Regional Frequency Analysis including nonstationarity
- Volume 2: Projections
- Issues with NOAA Atlas 15:
 - RFA includes same spatial footprint for all moments
 - Higher-order moments require larger sample size
 - $\boldsymbol{-}$ Separate treatment of historical trends and future projection
 - Observed trends inform our knowledge of future trends (are models accurate?)
 - $\bullet \ \mathsf{Model} \ \mathsf{projections} \ \mathsf{inform} \ \mathsf{our} \ \mathsf{knowledge} \ \mathsf{of} \ \mathsf{current} \ \mathsf{trends} \ \mathsf{(is} \ \mathsf{history} \ \mathsf{noisy?)}$

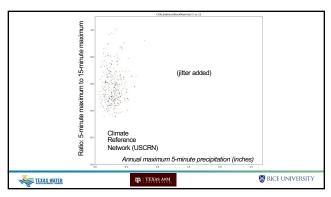
16	TEXAS WATER

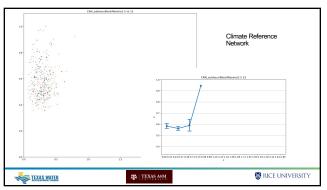
TR | TEXAS A&M.


😽 rice university

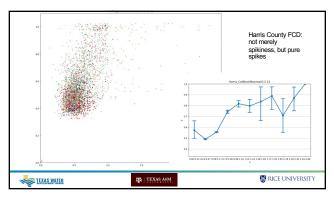
Coming Sooner: TRAIN (Texas Rainfall Analysis Incorporating Nonstationarity) Sponsor: Texas Water Development Board Foundation: NOAA Atlas 14 data Additional data Longer period of record, shorter durations Spatial statistics No regionalization; automatic consistency across durations Climate model projections Merged analysis of nonstationarity Techniques and results may improve NOAA Atlas 15

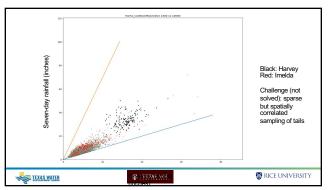
😽 rice university


13

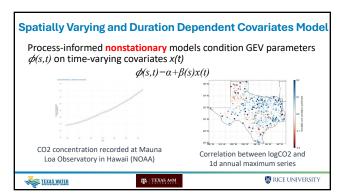

TEXAS WATER

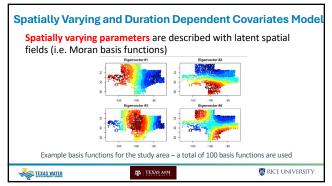


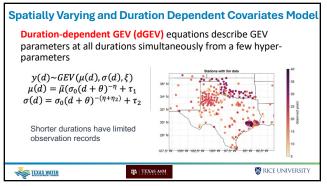

TR | TEXAS ARM



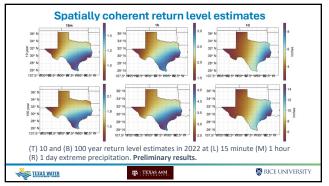
20

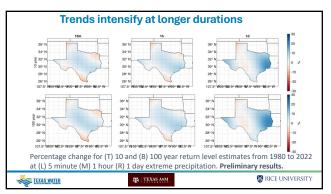

Spatially Varying and Duration Dependent Covariates Model Bayesian Hierarchical Model for annual maximum precipitation y for station s, year t, and duration d: $y(s,t,d) \sim GEV(\mu(s,t,d),\sigma(s,t,d),\xi(d))$ 1. Nonstationarity: parameters conditioned on time-varying covariates 2. Spatially varying parameters: latent spatial fields 3. Duration-dependent GEV distributions (dGEV): learn equations that describe GEV parameters for all durations simultaneously

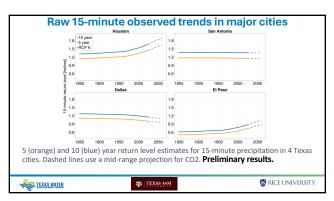

TR | TEXAS A&M

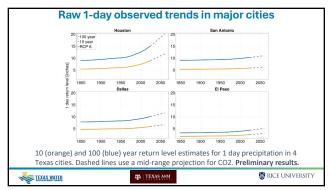

RICE UNIVERSITY

21


TEXAS WATER







	Atlas 14	Spatially Varying and
		Duration Dependent Covariates Model
Stationarity	Stationary	Process-Informed Nonstationarity
Regionalization	Region of Influence	Latent spatial fields (i.e. Moran basis functions)
5m/10m estimates	Constant scales from 15m estimates	Duration-dependent GEV
Estimation	L-moments	Bayesian inference

Summary and Status • A TRAIN is coming • Complete: - Input data collection - Quality control - Statistical algorithm implementation - Climate model projection analysis • Nearly complete: - Historical data analysis • To be done: - Merger of historic and projected trend information using planar trend fits - Production of time-dependent return frequency grids - Review and release

Take-Home Messages

- A TRAIN is coming which delivers:
 Future rainfall frequency grids for Texas

 - Improved present-day rain frequency grids
- · Encourage the use of this data for:
 - future flood risk mapping

 - hydraulic infrastructure design projects
 - flood mitigation efforts
- Reviews from federal agencies like NOAA, USGS, and USACE will be requested and addressed before sharing for public use.

TEXAS WATER

31

References

- Fagnant, Carlynn, Avantika Gori, Antonia Sebastian, Philip B. Bedient, and Katherine B. Ensor. 2020.
 "Characterizing Spatiatemporal Trends in Extreme Precipitation in Southeast Texas." Natural Hazards 104(2):1597-1621. doi: 10.107/s11093-026-04235-x.
- Fauer, Felix S., Jana Ulrich, Oscar E. Jurado, and Henning W. Rust. 2021. "Flexible and Consistent Quantile Estimation for Intensity-Duration-Frequency Curves." Hydrology and Earth System Sciences 25(12):6479– 94. doi: 10.5194/insex.25-6479-2021.
- Lee, Ben Seiyon, and Murali Haran. 2022. "PICAR: An Efficient Extendable Approach for Fitting Hierarchical Spatial Models." Technometrics 64(2):187–98. doi: 10.1080/00401706.2021.1933596.
- Perica, Sanja, Sendra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, and Orlan Wilhite. 2018. NOAA Atlas 14. Volume 11 Version 2.0: Texas. Silver Spring, MD: National Weather Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce.
- Serinaldi, Francesco, and Chris G. Kilsby. 2015. "Stationarity Is Undead: Uncertainty Dominates the Distribution of Extremes." Advances in Water Resources 77:17–36. doi: 10.1016/j.advwatres.2014.12.013.
- Wright, Daniel B., Christopher D. Bosma, and Tania Lopez-Cantu. 2019. "U.S. Hydrologic Design Standards Institution to the to Large Increases in Frequency of Rainfall Extremes." Geophysical Research Letters 46(14):8144–53. doi: 10.109/e1019GI 083235.

TEXAS WATER

TR TEXAS A&M

RICE UNIVERSITY

32

Contact Us

John Nielsen-Gammon: n-g@tamu.edu

James Doss-Gollin: jdossgollin@rice.edu

Rewati Niraula: Rewati.Niraula@twdb.texas.gov

Saul Nuccitelli: Saul.Nuccitelli@twdb.Texas.gov

TEXAS WATER

😽 rice university