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Project Overview

« Develop projected future rainfall frequency grids for Texas by incorporating
information from historic trends and climate model projections.

Improvements to existing Atlas 14 data.

Gap Filler between Altas 14 and Atlas 15.

Products can be utilized for future flood
mapping, planning, hydraulic infrastructure
design projects, and in flood mitigation efforts
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Project Team
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Ad(ditional review from subject matter experts from federal agencies like NOAA, USGS and
USACE will be requested and addressed before the final report and data is shared for public use.
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Project Timeline

Project Initiation: Fall 2022
Project Draft Report: Fall, 2024

Final Report and Data Dissemination: Spring 2025
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¢ 2018: NOAA Atlas 14:
Official estimates of extreme
rainfall risk (100-yr events,
etc.)

Analysis includes 2017
rainfall

Previous analysis dates from
1960s

Old analysis (contours) and
change (shading) in 1-day
100-yr rainfall amounts
shown at right
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Return period (Years)

Typical PMP Range

From Modernizing Probable Maximum Precipitation, NAS (2024)
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rep85 Model average precip

Downscaled CMIP5,
Texas river basins,
high-end scenario:
trends least negative
(or positive) for wettest
months

Percent change per decade.

From Projected Changes
in the Runoff Spectrum in
Texas,

John Nielsen-Gammon
and William Baule, 2024

Change in monthly precipitation (%/decade)
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Percentile

(b) Percent Intensity Change of 100-yr Single-Day Rainfall
from 1980 to 2020 80
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Coming: NOAA Atlas 15

Volume 1: Regional Frequency Analysis including
nonstationarity

Volume 2: Projections
Issues with NOAA Atlas 15:
— RFAincludes same spatial footprint for all moments
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(b) Percent Intensity Change of 100-yr Single-Day Rainfall
from 1980 to 2020 80
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Nonstationarity Limited Observations

Return level exceedance counts 1 Short durations with limited records
(Wright et al., 2019) (Perica et al., 2018)

Uncertainty

Nonstationarity - More parameters - Different trend estimates at nearby
Uncertainty I (Serinaldi and Kilsby, 2015) stations (Fagnant et al., 2020)
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Coming: NOAA Atlas 15

Volume 1: Regional Frequency Analysis including nonstationarity

Volume 2: Projections
Issues with NOAA Atlas 15:

— RFAincludes same spatial footprint for all moments
« Higher-order moments require larger sample size

— Separate treatment of historical trends and future projection
* Observed trends inform our knowledge of future trends (are models accurate?)
* Model projections inform our knowledge of current trends (is history noisy?)
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Coming Sooner: TRAIN

(Texas Rainfall Analysis Incorporating Nonstationarity)

Sponsor: Texas Water Development Board
Foundation: NOAA Atlas 14 data
Additional data
— Longer period of record, shorter durations
Spatial statistics
— No regionalization; automatic consistency across durations

* Climate model projections
* Merged analysis of nonstationarity
* Techniques and results may improve NOAA Atlas 15
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Data

NOAA Atlas 14
Global Historical Climatology Network — Daily
United States Climate Reference Network — 5-minute

Cooperative Network — Hourly
Automated Surface Observing System — 5-minute

Jefferson County Drainage District 6 - 5-minute

Harris County Flood Control Network - 5-minute
Oklahoma Mesonet — 5-minute

West Texas Mesonet — 5-minute
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Quality Control

¢ Outlandishly small numbers
¢ Outlandishly large numbers
« Statistically weird storms
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Ratio: 5-minute maximum to 15-minute maximum

Climate
Reference
Network (USCRN)

Annual maximum 5-minute precipitation (inches)

(jitter added)
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Climate Reference
Network
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Automated Surface
Observing System
(airports): higher 5-
minute values are more
spiky (!)

asos,
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Harris County FCD:
not merely
spikiness, but pure
spikes
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Spatially Varying and Duration Dependent Covariates Model

Bayesian Hierarchical Model for annual maximum precipitation y for
station s, year t, and duration d:

V(s,t,d)~GEV(u(s,t,d),o(s,t,d),&(d))

1. Nonstationarity: parameters conditioned on time-varying covariates
2. Spatially varying parameters: latent spatial fields

3. Duration-dependent GEV distributions (dGEV): learn equations that
describe GEV parameters for all durations simultaneously
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Spatially Varying and Duration Dependent Covariates Model

Process-informed nonstationary models condition GEV parameters
#(s,t) on time-varying covariates x(t)

As.)=a+f(s)x(1)

i
- e i
CO2 concentration recorded at Mauna

Loa Observatory in Hawaii (NOAA) Correlation between logCO2 and

1d annual maximum series
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Spatially Varying and Duration Dependent Covariates Model

Spatially varying parameters are described with latent spatial
fields (i.e. Moran basis functions)

Eigenvactor #1 Eigenvector #2.

3
2 =

Example basis functions for the study area — a total of 100 basis functions are used
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Spatially Varying and Duration Dependent Covariates Model

Duration-dependent GEV (dGEV) equations describe GEV
parameters at all durations simultaneously from a few hyper-
parameters

YD~GEV(u(d),0(d),§) [t il £
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Methodology comparison with Atlas 14

Atlas 14 Spatially Varying and
Duration Dependent
Covariates Model

Stationarity Stationary Process-Informed
Nonstationarity
Regionalization Region of Influence Latent spatial fields (i.e.
Moran basis functions)
5m/10m estimates Constant scales from 15m  Duration-dependent GEV
estimates
Estimation L-moments Bayesian inference
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inches.

(T) 10 and (B) 100 year return level estimates in 2022 at (L) 15 minute (M) 1 hour
(R) 1 day extreme precipitation. Preliminary results.
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Trends intensify at longer durations

= ‘_ L F —— |
ol | B = R i
Baxn, | 1 .
e “y, o 5

3N
WA J 1
2N NS 2N e
\ &
N o 2 d
s =1 N =
N | N Sk
§an —J 2N,
| Sl F t
! | D ! {
80w | wow et

J AN A
N \

N

Percentage change for (T) 10 and (B) 100 year return level estimates from 1980 tDwZUZZ
at (L) 5 minute (M) 1 hour (R) 1 day extreme precipitation. Preliminary results.
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Raw 15-minute observed trends in major cities
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5 (orange) and 10 (blue) year return level estimates for 15-minute precipitation in 4 Texas
cities. Dashed lines use a mid-range projection for CO2. Preliminary results.
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Raw 1-day observed trends in major cities
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10 (orange) and 100 (blue) year return level estimates for 1 day precipitation in 4
Texas cities. Dashed lines use a mid-range projection for CO2. Preliminary results.
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Summary and Status
¢ ATRAIN is coming
¢ Complete:
— Input data collection
— Quality control
— Statistical algorithm implementation
— Climate model projection analysis
¢ Nearly complete:
— Historical data analysis
* Tobe done:
— Merger of historic and projected trend information using planar trend fits
— Production of time-dependent return frequency grids
— Review and release
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Take-Home Messages

ATRAIN is coming which delivers:
— Future rainfall frequency grids for Texas

— Improved present-day rain frequency grids

Encourage the use of this data for:

— future flood risk mapping

— planning

— hydraulic infrastructure design projects
— flood mitigation efforts

Reviews from federal agencies like NOAA,
USGS, and USACE will be requested and
addressed before sharing for public use.
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Contact Us

John Nielsen-Gammon: n-g@tamu.edu
James Doss-Gollin: jdossgollin@rice.edu
Rewati Niraula: Rewati.Niraula@twdb.texas.gov

Saul Nuccitelli: Saul.Nuccitelli@twdb.Texas.gov

v@‘ RICE UNIVERSITY

11


https://doi.org/10.1007/s11069-020-04235-x
https://doi.org/10.5194/hess-25-6479-2021
https://doi.org/10.1080/00401706.2021.1933596
https://doi.org/10.1016/j.advwatres.2014.12.013
https://doi.org/10.1029/2019GL083235

