Date: 09 March 2016

Jerry L. Cotter P.E.
Chief of Water Resources – Fort Worth, US Army Corps of Engineers

Interagency Flood Risk Management Hydrology Assessments
Basic Technology Concepts

- How often does technology double
 - Pre 1900 ≈ 100 years
 - Post WWII ≈ 25 years
 - TODAY ≈ 1.5 years
 - FUTURE ≈ 12 HOURS

- Inferences
 - If you are an expert today, you may not be tomorrow
 - If you are an expert, your paradigm may be obsolete
 - By the time you create and application, it is obsolete
 - You cannot hold back technology

- Technology can be:
 - Your friend
 - Your nightmare

- Technology can not:
 - Replace experience, wisdom and expertise
 - More data does not mean better data or even good data

- Managing technology will be challenging
Technology Changes
New Technologies In Flood Risk

- Hydrologic network
 - More gages, longer records
- CWMS Modeling (USACE)
- Updated precipitation frequency estimates (Atlas 14)
- New statistical guidance (Bulletin 17C, Interagency)
- Improved precipitation (MetVue) runoff (HMS) and river hydraulics (RAS) modeling techniques (WAT)
- USACE hazard teams (R&D in Meteorology, Hydrology and Hydraulics)
 - Hydrologic hazards
 - Stochastic techniques in hydrology (HEC-WAT)
 - Meteorology hazards
 - HEC-MetVue
 - Levee safety studies
 - Dam safety studies
- Dam operations – watershed regulation
- National Water Center – Tuscaloosa, AL
Hydrologic Network

- Cooperative program – federal, state, local, academia, AE community
- Over 400 Remote Sensing Stations, approximately 2000 Observers
- Basic data for operation of the projects
- Calibration of NWS precipitation estimates
- Model calibrations, real-time forecasting and hydrologic investigations
- Jointly funded with USACE direct expenditures of close to $18 million annually, SWF $1 million annually
- Partnerships
 - USGS, NWS, River Authorities, Counties, Cities
 - Coordination and resource sharing to maximize network benefits
 - USACE-SWF has leveraged partnerships for $700k
- Critical to understanding:
 - Flood risk
 - Non-stationary WS trends
 - Climate
CWMS Implementation

- 200+ USACE watersheds
- $125+ M investment, nationally
- $6 M for Texas
- 6+ year plan
- Supports
 - Dam safety, operations (forecasting), can be leveraged (FEMA)
- 2014
 - Colorado, Neches, Guadalupe, Trinity, San Jacinto (Buffalo Bayou)
- 2016 - Brazos
- 2017 - Red
- MetVue -> HMS-> RiverWare-> RAS-> FIA
NOAA Atlas 14
Precipitation Frequency Estimates

- NOAA - Office of Hydrologic Development – Sanja Perica PhD
- UCAR
 - Technical Paper 40 & 49 (1961 & 1964)
 - USGS/TXDOT (Asquith)
 - 10 volumes completed
 - Improved techniques
 - Additional durations (urban studies, 5-min)
 - Additional frequencies (1000-yr)
 - Aerial reduction factors
 - Increased granularity
 - Denser network
 - Improved spatial interpolation
 - PRISM techniques
 - Longer records
 - Connectivity to USACE software (MetVue)
 - Cost – $1.75 mil
 - $1.0 mil pledged
Rainfall Frequency Data in Texas is limited to TP 40 and 49 (1960s era analysis) which only analyzed precipitation out to a 10-Day Duration.

NOAA Atlas 14 update for Texas is in progress. Hendrix, OK is northwest of Lewisville Dam provides a reasonable estimate of what the NOAA Atlas 14 update may look like in North Texas.
MetVue Real-Time Applications

- Ingest Radar/Forecast Data
- Analyze In-Place or Transpose
 - Ability to rotate storm or maximize
 - Provides a variety of storm options
- Compute Basin Average Rainfall
- Output Data to Hydrology Model
MetVue PMP/Planning Applications

- **Analysis of Extreme Storms**
 - Use of radar and point rainfall data
 - Combination of recent and historical storms

- **Transposition to Additional Basins**
 - Provides greater confidence in results
 - Simplifies process for end-users

- **Development of Project Design Storm**
 - Adheres to accepted NWS/WMO standards
 - Incorporates HMR procedures (52, 55A, etc.)

- **Use in PMP/PMF Studies**
 - Ability to conduct studies more efficiently
 - Interconnectivity with Hydrology models

- **Assisting the Planning Process**
Statewide Reservoir Development

Background

- Multi-purpose
 - FDR, WS, hydro, env, rec, navigation
- Critical to the early development of Texas
- Significant federal economic contribution
- Planned/constructed dams 111/32
 - Lake Travis 1942, Cooper 1991
- 8.8 M ac-ft conservation storage
 - 20% - 25% surface water supply
 - BRA, TRWD, Dallas WU, cities, LNVA, GBRA, UCRA, NETMWD (pipelines)
- 15.9 M ac-ft flood storage in 31 federal dams
- Costs (2013)
 - Construction - $8.2 billion
 - Benefits - $76 billion (flood only)
 - B/C ratio – 9+:1
- Annual recreation visits – 22 M
Background

- Congress - National Flood Insurance Act
- FEMA - National Flood Insurance Program (NFIP)
 - Standards
 - Disaster/rebuilding aid funded by land owners through the flood insurance program
 - Mapping products
 - Standards and mapping reflects 1% annual chance
 - Pre 2010 – community basis
 - Post 2010 – watershed basis

- USACE
 - 2013 USACE CWMS watershed model development ($125+ million investment)
 - Numerous watershed and planning studies
 - Watershed regulation

- USGS
 - Stream gage program
 - Statistical hydrology and regional regression
 - Watershed studies

- NWS
 - Precipitation estimates
 - Real-time forecasting and precipitation products
USACE Flood Damage Reduction Projects 1940’s Through 1990’s
Objectives

- Consistent and best estimate of hydrology across entire watersheds
- Utilize various hydrologic analysis techniques
- Examine and account for non-stationary trends
 - Land use changes
 - Climate variability
 - Regulation
- Watershed report
 - 0.2%, 1%, 2%, 4% and 10% exceedance probability events
- Modeling guidelines to facilitate increased granularity
- Interagency partnership
Participating Agencies

- FEMA Region 6 - Sponsor
- U.S. Army Corps of Engineers (USACE)
 - Fort Worth District – Program management
 - Tulsa District
 - Galveston District
 - Albuquerque District
 - Little Rock District
 - Vicksburg District
- U.S. Geological Survey (USGS)
 - Texas
 - Oklahoma
 - Arkansas
 - New Mexico
 - Louisiana
- National Weather Service – River Forecast Centers
 - West Gulf
 - Tulsa
 - Lower Mississippi
Interagency Collaboration

- Project and program management
 - Fort Worth District
 - Funding – receipt and distribution
 - Schedules - oversight
 - Consistency - oversight
 - Resourcing - facilitate

- Technical services
 - Offered first to specific agency offices within who’s footprint the watershed resides
 - Fort Worth will facilitate division of work within that group
 - If insufficient resources are available, work will be offered to other agency offices within FEMA Region 6
 - If insufficient resources are available across all agency offices within FEMA Region 6, work will be resourced through the MMC or contractors
Methodology

- Statistical hydrology
- Rainfall-runoff modeling
 - Existing conditions
 - Future conditions
 - Ultimate development conditions
- Period of record (POR) simulations
 - Regulated
 - Unregulated watershed conditions
- Reservoir studies
- Stochastic methods in hydrology
- Comparison and convergence of methods
Advantages

- Multi-Agency approach
 - Advanced scientific team
 - Leverage knowledge within each agency
 - Strengthens Relationships between Federal Agencies
 - Leverage current and historic flood risk studies
 - Leverage newly developed USACE CWMS models
 - Represents multiple federal agencies working to support FEMA and their flood risk program
 - Complements USACE flood risk programs
- Leverages funding from multiple programs
- Consistent results across watersheds
- Convergence of various hydrologic analysis techniques
- Look at impacts of non-stationary watershed trends on flood risk
- Provides data to address the FFRMS Executive Order
- Tools and models to increase granularity for detailed mapping efforts
Products

- Watershed report
- Results from various hydrologic methods
- Selected results
- Tools, models, techniques and guidelines which can be used to increase granularity
- Comparison to previous flood risk studies within the watershed
First Two Studies for Texas – Guadalupe and Trinity Basins

- First basins selected by FEMA
- Completed CWMS modeling by USACE
- Signed Interagency Agreement Sept 2015
- Multi-year basin-wide hydrology studies
- USACE Fort Worth acting as program lead
- Work performed by team members from USGS Fort Worth, NWS WGRFC, and USACE Fort Worth and ERDC
Guadalupe Basin Hydrology Study

- 24 month schedule
- $500k Budget
- Using existing USACE Guadalupe CWMS HEC-HMS model, RiverWare model, and reservoir studies.
- USGS performing statistical analysis of stream gages
- NWS providing precipitation data
- Equivalent of 1 FTE for 2 years spread across multiple agencies and offices.
Trinity Basin Hydrology Study

- 48 month schedule
- $1M budget
- Using existing USACE Trinity CWMS HEC-HMS model, RiverWare model, and reservoir studies.
- USGS performing statistical analysis of stream gages and some HEC-HMS modeling
- NWS providing precipitation data
- Equivalent of 1 FTE for 4 years spread across multiple agencies and offices.
Why Watershed Scale Hydrology Assessment
Upper Trinity River Dam and Levee Safety Studies

- Flood control system
 - Over $70 billion in damages prevented (60 years)
 - $2-3 billion per year
- Water supply system
 - 6.8 million served
How Much Uncertainty Do You Have with 100 years of Record?

100-yr (1%) Estimate varies from 100,000 to 450,000 cfs with 100 years of Record

Credit: Beth Faber at USACE-HEC
How Much Gage Record Do You Need to Estimate the 100-yr Discharge?

Experiment: 1000 years of data, sampled from LPIII with known parameters

Dashed Yellow Line = Actual 100-yr (1%) Discharge
Solid Yellow Line = Estimate of 100-yr (1%) Discharge based on previous years of record

300 to 400 years of Record before 100-yr Estimate Converges

Credit: Beth Faber at USACE-HEC
Conclusions

- 100 years of Record may not be enough!
- Watershed models and stochastic techniques can help compensate for non-representative samples in the gage record
- Statistical hydrology is still a valuable tool to be used in this effort

![Graph showing discharge vs. return period for Wimberley](chart.png)

- 149,000 cfs 2015 Gage 100-yr, est.
- 126,000 cfs 2013 Gage 100-yr, est.
- 23,000 cfs difference in 100-yr estimate after 1 Flood Event
- 40,000 cfs difference from BFE discharges
Closing

- Our technology centered around flood risk is good CAN BE IMPROVED!
- This effort will leverage the latest technologies
- This effort may result in new technologies for flood risk
- This effort brings more federal tax dollars back to Texas to be spent on flood risk
- Improved life safety
- Decreased property damages
- PLEASE STAY ENGAGED WITH US!
Questions?

Mr. Jerry L. Cotter, P.E.
Chief, Water Resource Branch

U.S. Army Corps of Engineers
Fort Worth District (SWF)
819 Taylor Street
Fort Worth, TX 76102

(817) 886-1549 TEL
(817) 454-1290 CEL

Jerry.L.Cotter@usace.army.mil