Upper Whites Branch
Stream Restoration

Tim Whitefield, P.E., CFM
Randy Alexander, CWB
Chris Hamilton, CWB

Peloton Land Solutions Inc.

Craig Schkade
Andrew Wilson, EIT, CFM
Frank Holland, CWB

April 16, 2015

Rendering by Bennett Benner Partners
Background

• 400+ acre mixed use development
• Existing 9-acre stock pond
 – Unknown design/construction
 – Presented safety concerns
 – Owner elected to remove rather than rebuild
 – Jurisdictional Waters of the U.S.
 • Future development or fill would require permit
Dam Removal

• Permitting is definitely required:
 – USACE – November 2012 (NWP 27)
 – TCEQ – April/May 2013
 – City of Fort Worth – May 2013

• Dewatering & Removal – May-July 2013
One-Step Removal

TIMBER MATS

PROTECTED AREA
One-Step Removal

PROTECTED AREA

ONE STEP

PELOTON LAND SOLUTIONS
Now That That’s Out of the Way...

• Stream Restoration Design
 – H&H
 – Geomorphology
 – Landscape & ecology
 – Amenities & public access

• Stream Construction
 – Channel
 – Riffles & crossings
 – Plantings
Now That That’s Out of the Way...

• Stream Restoration Design
 – Hydrology & Hydraulics
 – Geomorphology
 – Landscape & ecology
 – Amenities & public access

• Stream Construction
 – Channel
 – Riffles & crossings
 – Plantings
Restoration Design - Concept

• Required for USACE permit – NWP 27

• Stream geometry
 – Gradient
 – Design discharge
 – Cross-sectional geometry

• Vegetation
 – North Texas Blackland Prairie
 – Native tall grasses & trees

• Recreation & access
Historical Data

- Stream parameters from historical photo
 - Pond constructed between 1963 - 1968
 - Sinuosity = 1.78
 - Gradient = 0.008 (approximate)
 - Probably not achievable today
 - Design goal sinuosity = 1.4
Hydrology

- Pond controls upper portion of the watershed
Hydrology

- Channel downstream is stable, well-formed
- Detailed survey of channel geometry available
- HEC-RAS model used to determine bankfull (dominant) discharge

\[Q = ? \]
Hydrology

- Determine corresponding rainfall
- Use proposed hydrology model to determine post-developed bankfull discharge
- Slightly smaller than 1-year event
Alignment

• Tie-in upstream and downstream
 – Upstream just above gas well road (to be removed)
 – Downstream at Hillwood Parkway culverts

• Meander within proposed open space for sinuosity
Hydraulics

• Gradient
 – Tie in to upstream, downstream elevations
 – Influenced by sinuosity goal
 – Requires drop structures
Hydraulics
Hydraulics

- Channel geometry
 - Side slopes – 2:1
 - Depth – varies from 2’ to 3’
 - Bottom width – varies from 6’ to 10’
Channel & Mass Grading
Concept Plans
Drop Structures

• Necessary for desired gradient
• Client preferred natural look
• Examples found in nearby stream
• Constructed from on-site quarried boulders
Drop Structures
Drop Structures
Drop Structures
Construction

- Channel
- Riffles & crossings
- Plantings
Channel Construction
Drop Structures
Drop Structures
Drop Structures
Drop Structures
Amenities

• Trails with 3 bridge crossings (100-year)
• Amador Drive Conspan Arch
 – Oversized to allow trail underneath
• Native grasses & trees
 – Some areas mowed, but most allowed to grow
 – Lots of mature native trees
 – Planting by Rob Rider (SWA)
 – Consultation by LBJ Wildflower Center
Performance

• 4” rain on June 25, 2014
• Immediately after construction
• Little vegetation
• No evidence of channel damage:
 – No downcutting
 – No bank erosion/meandering
 – No damage to riffles
Performance
Performance
Performance - Video
Questions?
Saved Slides
Hydrology

- Pond controls upper portion of the watershed
- Channel downstream is stable, well-formed
- Detailed channel geometry available downstream of the dam
- HEC-RAS model used to determine bankfull (dominant) discharge
- Determine corresponding rainfall
Construction Drawings