Lower Dudley Branch Flood Study: A 2D Hydraulic Analysis

Mike McKay, PE, CFM – City of Carrollton
Brenda Gasperich, PE, CFM – Brown & Gay Engineers, Inc.
Jeff Whanger, PE, SIT, CFM – Brown & Gay Engineers, Inc.
Jim Keith, PE, CFM – Dewberry
Purpose/Background

- Why the project was necessary
- What the end result will be used for
When 2D is a better option than 1D...

- Where 1D models have limitations
 - Complex patterns
 - Multiple confluences
 - Split flows
- Timing and volume as river overflows or spills
- Diversions
- Spill in undefined flow path
- Flow is allowed to spread out
- No interpolating on floodplain
When is 2D a better option than 1D...
When is 2D a better option than 1D...
When is 2D a better option than 1D...
Software selection

- Various 2D software available
 - XP-SWMM
 - InfoWorks RS or ICM
 - MIKE Flood

- Why we selected XP-SWMM
 - FEMA approval
 - Model results review, XP-SWMM reader
 - Coupled 1D/2D Model
2D Scoping Considerations

• Inputs & Parameters
 – Topography (LiDAR)
 – Survey
 – As-built Plans
 – Hydrology
 – Existing Models
 – Data and File Size requirements

• Results
 – Calibration/validation
 – Review Plan
 – Output Format
 – End Uses (Planning, Design, CLOMR/LOMR)
 – Comparisons to effective BFEs
Know What to Expect

• Large files
 – Multiple GBs (2 GB+ per simulation)

• “Unlimited” may vary depending on hardware

• Qualified Reviewers

• Deliverables (GIS data, model output, animations, reports)
Lower Dudley Branch Flood Study: Approach/Methodology

- **Model Schematic**
 - 1D links: Inflow into 2D
 - FEMA or USACE CDC HEC-RAS
 - FEMA or USACE CDC HEC-1
 - or HEC-HMS hydrographs
 - 2D Area
 - LiDAR/Topo
 - 1D/2D Interface lines
 - Boundary Conditions
 - Back into 1D Domain
Lower Dudley Branch Flood Study: Model Development
Lower Dudley Branch Flood Study: Model Development

1D Inflow
HEC-HMS
HEC-1
Lower Dudley Branch Flood Study: Model Development

• 2D Surface
Lower Dudley Branch Flood Study: Model Development

- **Approach/Methodology**
 - 2D area

 - LiDAR/Topo ➔ DTM ➔ Point Grid ➔ XPTIN

- Topo Under Bridge
- Breaklines
Lower Dudley Branch Flood Study: Model Development

- **Approach/Methodology**
 - 2D area
 - LiDAR/Topo → DTM → Point Grid → XPTIN
 - ESRI Terrain
Lower Dudley Branch Flood Study: Model Development

- **Approach/Methodology**
 - 2D area

 ![Diagram](image-url)

 - LiDAR/Topo ➔ DTM ➔ **Point Grid** ➔ XPTIN
Lower Dudley Branch Flood Study: Model Development

- **Approach/Methodology**
 - 2D area

 LiDAR/Topo → DTM → Point Grid → XPTIN
Lower Dudley Branch Flood Study: Model Development

- **Approach/Methodology**
 - Back into 1D domain
 - Uses 1D-2D interface
 - Captures flow
 - Compares WSEL
 - Used single 1D node
Lower Dudley Branch Flood Study: Model Development
Lower Dudley Branch Flood Study: Results to Date

Data:
- 2D Results compared to FEMA RAS models
- 2D Results compared to DFIRM Floodplain
- 2D Results compared to DFIRM BFEs
- Routed hydrology

Differences
- Steady State Direct Step vs. Unsteady St. Venant & SWE.
- Output interpolation detail
- Ground surface models???
- 1D vs. 2D, not unidirectional
- Steady vs. Unsteady & 1D vs. 2D Attenuation
Lower Dudley Branch Flood Study: Results to Date

- **2D vs. RAS at Select Locations**

<table>
<thead>
<tr>
<th>Location (Physical Description)</th>
<th>RAS River Station</th>
<th>XPSWMM WSEL (ft)</th>
<th>HEC-RAS WSEL (ft)</th>
<th>Δ (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream reach of model</td>
<td>76475</td>
<td>439.22</td>
<td>438.33</td>
<td>0.89</td>
</tr>
<tr>
<td>Upstream of Beltline Bridge</td>
<td>87428</td>
<td>440.91</td>
<td>440.63</td>
<td>0.28</td>
</tr>
<tr>
<td>Upstream of Sandy Lake Bridge</td>
<td>93927</td>
<td>443.82</td>
<td>444.52</td>
<td>-0.7</td>
</tr>
<tr>
<td>Downstream of I35E Bridge</td>
<td>110074</td>
<td>450.89</td>
<td>450.44</td>
<td>0.45</td>
</tr>
<tr>
<td>Upstream of I35E Bridge</td>
<td>110475</td>
<td>451.7*</td>
<td>451.37</td>
<td>0.33</td>
</tr>
<tr>
<td>Downstream of SH121 Bridge North of RR Tracks</td>
<td>122744</td>
<td>453.8*</td>
<td>453.08</td>
<td>0.72</td>
</tr>
<tr>
<td>Downstream of SH121 Bridge South of RR Tracks</td>
<td>122744</td>
<td>453.3*</td>
<td>453.08</td>
<td>0.22</td>
</tr>
<tr>
<td>Upstream of SH121 Bridge North of RR Bridge</td>
<td>122944</td>
<td>453.9*</td>
<td>453.12</td>
<td>0.78</td>
</tr>
<tr>
<td>Upstream of SH121 Bridge South of RR Bridge</td>
<td>122944</td>
<td>453.4*</td>
<td>453.12</td>
<td>0.28</td>
</tr>
<tr>
<td>Upstream of Eisenhower Bridge</td>
<td>7065*</td>
<td>459.05</td>
<td>457.78</td>
<td>1.27</td>
</tr>
</tbody>
</table>

* Indicates approximate 2D water surface elevations. Actual elevations will vary over distance.

+ River station from Lower Dudley Branch model.
Lower Dudley Branch Flood Study: Results to Date

- 2D Results compared to DFIRM Floodplain
Lower Dudley Branch Flood Study: Results to Date

- 2D Results Compared to FEMA BFEs
Lower Dudley Branch Flood Study:
Results to Date

- Differences in flow routing due to higher attenuation in 2D area
Lessons Learned

- **Model setup**
 - LIDAR & Topo are KEY to stability
 - Stability = lower run times, better results

- **Diligence in defining LIDAR & survey areas**
 - Too much = wasted money
 - Not enough = bad model

- **Limitations of software**
 - Grid cell size is very important
 - Ability to model 1D structures
 - XPSWMM “Reader” difficulties

Next Steps

- Final Report to Client
- Discuss LOMR effort
- Potentially re-model tribus using TW condition (G&S Section C) and/or extending through the confluence to I35E.
Lower Dudley Branch Flood Study: Benefits of the Study

- New issues identified from 2D Analysis
 - Trib starting WSE
 - Not normal depth
 - Impacts trib WSE’s in highly urbanized reaches
 - Frankford Road Flooding
 - Not depicted in FEMA 1D Analysis
 - Corroborated by City Staff
 - Development Considerations
 - More detailed floodplain
Lower Dudley Branch Flood Study:
Benefits of the Study

Frankford Road Flooding:
FEMA 1D RAS Floodplain
Lower Dudley Branch Flood Study: Benefits of the Study

Frankford Road Flooding: 2D Results
Lower Dudley Branch Flood Study: Conclusions

• Why 2D
 – Complex confluences and mixing flows
 – Refine 1D Assumptions
 • Tailwater
 • Overflows

• Scoping Considerations
 – LiDAR/Topo Data
 – Large data sizes (16+ GB)
 – Know software limitations up front

• Modeling Considerations
 – Different Needs
 – 2D Results differ from 1D
 • Unsteady, Attenuation, Different set of equations, etc…

• Benefits
 – Can resolve 1D model assumptions
 – Identify potential issues missed by 1D.
Questions?