Analysis of the 12 Lead ECG
18.4.025

Sally K. Miller, PhD, APRN, BC, FAANP
Associate Professor and
Associate Dean for Graduate Affairs
University of Nevada Las Vegas
School of Nursing

Financial Affiliation

- I have no financial affiliations to disclose

Objectives

- At the conclusion of this session the participant will:
 1. Apply a 5 step approach to 12-lead ECG interpretation
 2. Analyze acute and chronic morphologic changes
 3. Determine axis with the hexaxial plot
 4. Evaluate learned concepts in a case study
Outline

• Propogation of the AP
 – Normal conduction
 – Axis deviation

• 5 Step Approach
 – Rate, rhythm, intervals, axis, morphology

• Case study

Vector Analysis and Axis Determination

• Initiation and Propagation – Sequence of Cardiac Activation
 – The SA node depolarizes spontaneously
 – Atrial muscle depolarizes rapidly
 – The wave of depolarization funnels to AV node where it is delayed
 – Current travels to the bundle of His

Vector Analysis and Axis Determination (cont’d)

 – Current divides into right and left bundles
 – Depolarization of interventricular septum is left to right
 – Current moves simultaneously through the right and left bundle branches
 – Ventricles repolarize
Initiation and Propagation

Source: S.K. Miller

Limb Leads

- Vector is a voltage force that has direction as well as amplitude
 - Electrical events in the heart occur in three dimensions
 - ECG paper converts those dimensions to a two dimension picture – hence 12 leads
 - Using 12 leads allows us to visualize events from the anterior, inferior, and lateral perspective

Limb Leads

- The leads
 - Offer a lateral and inferior view
 - Axis is plotted based on the hexaxial system
 - Find the limb lead with the voltage closest to 0
 - Identify its right angle lead
 - On the ECG, see if that lead is positive (+) or negative (-)
The Hexaxial Plot

The Hexaxial Plot

Source: S.K. Miller
Axis Determination

• Determine the corresponding direction on the hexaxial plot
• Because the net vector is normally down and to the left, the normal axis should be in the vicinity of 60° – a range of –30° to +110° is normal

Axis Determination

• If the axis deviates to the left of -30°, this represents a left axis deviation
• If the axis deviates to the right of +110°, this represents a right axis deviation

Source: S.K. Miller
The Hexaxial Plot

Source: S.K. Miller
The System of ECG Interpretation

1. Rate
2. Rhythm
3. Intervals
4. Axis
5. Morphology

Rate

• Determine the R-R interval
• Each large square is 0.2 seconds
• Divide the number of large squares between R waves into 300 to determine rate
• Normal rate is 60 to 100 bpm
Rhythm

• Rhythm interpretation is presumed as a prereq to this presentation!
• The second step in 12-lead ECG assessment is identification of the rhythm, e.g., NSR, SB, ST, A-V block, atrial dysrhythmia, ventricular dysrhythmia, etc.

Intervals

• P-R interval represents A-V conduction
 – Should be 0.12 to .22 seconds
 – Prolonged P-R interval indicates a first degree block
 – Shortened P-R interval indicates a junctional rhythm with retrograde conduction

Intervals

• QRS duration represents ventricular depolarization
 – Should be < 0.12 seconds
 – Prolonged duration indicates a block in the bundle branches or a ventricular ectopic foci
Intervals

- Q-T interval represents repolarization of the ventricle
 - Q-T interval should be < ½ the R-R interval
 - Long Q-T interval increases the risk of ventricular dysrhythmia and sudden death

QRS Axis

- Identify the lead where the net voltage of the QRS is closest to 0
- Look for the perpendicular lead
- If the deflection of the perpendicular lead is +, then the axis is at the positive end of the pole
- If the deflection of the perpendicular lead is -, then the axis is toward the negative end of the pole

Abnormalities Caused by Drugs and Metabolic Conditions
Abnormalities of Rate

• Sinus bradycardia
 – Beta adrenergic antagonists
 – Calcium channel antagonists
 – Digitalis
 – Adenosine
 – Hypoxemia
 – Hypothyroidism
 – Hypothermia
 – Hyperkalemia

Sinus Tachycardia

• Catecholamines
• Caffeine
• Amphetamines
• Hyperthyroidism
• Anemia
• Fever

Heart Block

• Digitalis
• Beta adrenergic blockers
• Calcium channel blockers
• Adenosine
• Hyperkalemia
Atrial Flutter/Fibrillation

- Flutter
 - Hypoxemia
- Fibrillation
 - Thyroid hormone
 - Hyperthyroidism

Ventricular Fibrillation

- Most antidysrhythmic drugs
- Digoxin
- Tricyclic overdose
- Hypokalemia
- Hypomagnesemia
- Hypocalcemia

Torsade de pointe

- Class I antidysrhythmics
- Amiodarone
- Phenothiazine derivatives
- Tricyclic overdose
- Long QT syndrome
Analysis of the 12-Lead ECG
Part 2
Morphologic Changes

Morphologic Changes

• The V leads (V₁ to V₆), aka precordial leads, represent the anterior wall of the heart
 – V leads may be referred to as “anterior” leads
 – The limb leads represent the inferior and lateral walls of the heart

<table>
<thead>
<tr>
<th>Inferior Wall</th>
<th>Lateral Wall</th>
<th>Anterior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>II, III, aVF</td>
<td>I, aVL, (V₆)</td>
<td>V leads</td>
</tr>
</tbody>
</table>

P Wave Abnormalities

• The P wave represents atrial depolarization; an abnormal P wave would logically suggest an atrial abnormality
• Left atrial abnormalities
 – Biphasic P wave in V₁ is most common; must be 1 x 1 mm to be significant
 – Biphasic P waves occur in conditions that increase LVEDP
 – CHF, LVH, hypertensive heart disease may all cause this abnormality
P Wave Abnormalities

• Broad, notched P waves in limb leads suggest left atrial dilation
• These occur in conditions such as mitral stenosis and regurgitation

Right Atrial Abnormalities

• P wave > 2.5 mm in any lead
• Occurs in conditions such as lung disease and pulmonary artery hypertension
QRS Abnormalities

- Remember the normal flow of current and how it reflects on an ECG
 - ECG will record normal left to right activation in lead I – initial deflection is negative
 - LV depolarization produces an upward deflection
 - Late LV to RV current produces a negative deflection
 - After RV activation, return to baseline

QRS Abnormalities

- Right bundle branch block (RBBB)
 - QRS > 0.12 seconds
 - Remember that current normally moves left to right in the interventricular septum
 - ECG will record normal left to right activation in V₁
 - This is followed by normal LV activation
 - Late current LV to RV results in second upward deflection in V₁
 - After RV activation, return to baseline
Right Bundle Branch

Incomplete RBBB

- Usually a normal variant
- May reflect RV hypertrophy or dilation
- Very common with atrial septal defect
- RSR pattern in V₁
- QRS is < 0.12 seconds
Left Bundle Branch Block

- Sequence is opposite RBBB
- Loss of initial normal left to right activation
- Interventricular septum is activated from right to left, causing an abnormal upward deflection in the left lateral leads
- QRS is > 0.12 seconds
- Septum is activated from right to left, but the blocked left bundle limits the impulse

LBBB (continued)

- Right side depolarizes first; it is thin walled, so it produces a small current
- After RV depolarization, the current travels around to left ventricle
- Late left depolarization produces terminal QRS force
Fascicular Blocks

- The left bundle branch divides into two fascicles; the anterior and posterior
- LBBB is when both fascicles are blocked; QRS is wider than 0.12 seconds
- When only one of the fascicles is blocked, the diagnosis is either “left anterior fascicular block” or “left posterior fascicular block”
Fascicular Blocks

- Diagnosis of fascicular block is made when there is a shift in axis
- The QRS is not necessarily wider than normal
- LAFB is extreme left axis deviation, at least -45° and not caused by IWMI
- LPFB is diagnosed by right axis deviation, at least > 90°, usually > 110 to 120°

LAFB

The Hexaxial Plot
Bifascicular Block

- A right bundle branch block
 - RSR pattern in V₁
 - QRS > 0.12 seconds
- A coincident block of either the left anterior or posterior fascicle
- AKA – a RBBB with either left or right axis deviation
Left Ventricular Hypertrophy

- When you have hypertrophy of muscle, a variety of changes occur
 - The larger muscle mass produces more voltage
 - The increased size changes axis of electrical conduction
 - Resultant high pressure in left atria may change character of voltage movement through left atria
Romhilt + Estes
Point score system

• Amplitude – any of the following = 3 points
 – Largest R or S wave in any limb lead ≥ 20 mm
 – S wave in V1 or V2 ≥ 30 mm
 – R wave in V5 or V6 ≥ 30 mm
• ST-T strain (change in lateral leads)
 – On digitalis = 1 point;
 – Not on digitalis = 3 points

Romhilt + Estes
Point score system

• Left atrial abnormality = 3 points
• LAD > -30° = 2 points
• QRS duration ≥ 0.09 sec = 1 point
• Intrinsocoid deflection in V5 or V6 ≥ 0.05 sec = 1 point

5 or more points = LVH
4 points = probable LVH

Source: S.K. Miller
Right Ventricular Hypertrophy

- Most voltage in the QRS generated by LV
- When the right ventricle hypertrophies significantly, it can generate a lot of voltage; a more “rightward shift” occurs in V1

RVH

- Diagnostic criteria
 - R/S in V₁ > 1 or
 - R in V₁ + S in V₆ > 10.5 mm
- Supportive criteria
 - Right axis deviation > 110°
 - Right atrial abnormality
 - ST depression + T wave inversion in V₁ or V₂
Poor R Wave Progression

- In the normal ECG, the transition from negative V_{1-2} to positive V_{5-6} deflection occurs during V_{3-4}
- A delay or absence of this transition on ECG just means that anatomically the transition point has moved
Causes of PRWP

- COPD
- LV dilation
- Anterior wall MI
- Misplaced precordial leads
Low QRS Voltage

- QRS amplitude < 5 mm in all limb leads
- QRS amplitude in V leads usually < 10 mm, but not necessary for diagnosis

Causes of Low QRS Voltage

- Effusion
- Cardiomyopathy
- Hypothyroidism
- Obesity
- Emphysema
- Normal variant
ST-T Wave Abnormalities

- Ischemia and infarction tend to be regional events
- Depending upon anatomy, there may be some overlap

- An event in a large RCA that loops around the lateral wall might cause inferolateral ECG changes
- An event in a large anterior descending artery that has branches to the lateral wall may cause an anterolateral event
- An event in the left main artery may cause an anterolateral event
- Global ST-T changes are more typically caused by pericarditis

Arteries and Corresponding Leads

Source: S.K. Miller
ST Segment Depression

- Stenosed artery with some retrograde flow
- O2 demand exceeds supply
- Subendocardial ischemia
- Region of myocardium furthest from the stenosed artery is occluded
- If ischemia persists and myocardial injury occurs, a subendocardial MI occurs
 - Later changes will show T wave inversion

Subendocardial Injury

Source: S.K. Miller

ST Segment Elevation

- Most common cause is transmural MI
- Affected artery is totally occluded
- Is the primary ECG indication for thrombolytic therapy
- Prinzmetal's angina (acute vasospasm) usually produces complete vessel occlusion; will produce ST segment elevation if ECG recorded during event
ST Segment Elevation

- The size of the inferior and lateral MI is proportional to the sum of the elevation in the appropriate leads.
- The size of the anterior wall MI is proportionate to the number of anterior leads with elevation.

Source: S.K. Miller
Other Causes of ST Elevation

- There are causes of ST elevation that are not specific to myocardial damage
 - Pericarditis

Non-specific ST changes

- A label typically applied to ST depression that is not placed in a clinical context
- Specific ST changes
 - During exercise ECG
 - During chest pain
T Wave Inversion

- Reflects altered repolarization of ventricular muscle during ischemia/injury event
- May reflect permanent injury with scar formation and loss of muscle; permanent atypical path of repolarization

Q Waves

- Initial negative deflection of the QRS complex
- Must be 1 mm deep and 1 mm wide to be significant
- May be normal in leads III and V6
- A Q wave indicates transmural injury
Atypical Situations
WPW Syndrome

- Activation of accessory pathway results in preexcitation of the ventricle
- Delta wave may appear to be a Q wave
- No history of MI
- Normal echocardiogram
- Short P-R interval

Source: S.K. Miller
• Rate ______________
• Rhythm ______________
• Intervals ______________
 P-R ______________
 QRS ______________
 Q-T ______________
• Axis ______________
 Deviation? ______________

The Hexaxial Plot

Source: S.K. Miller
• Morphology
 – P Wave abnormality
 – Bundle branch block
 • Right or Left
 • Incomplete RBBB
 • LAFB or LPFB
 • Bifascicular block

• LVH
• RVH
• PRWP
• Low QRS voltage
• St-T abnormality
• Q wave

• Interpretation
End of Presentation!
Thank you for your time and attention.

References