Uropathogenic virulence factor FimH facilitates binding of pyometra-causing *E. coli* to canine endometrium

N. Krekeler, M. Marenda, P.F. Markham, G.F. Browning, K.M. Lodge, J.A. Charles, P.J. Wright

The University of Melbourne, Faculty of Veterinary Sciences, 250 Princes Highway, Werribee 3030, Victoria, Australia

Pyometra is a prevalent uterine infection that affects intact middle-aged bitches and *Escherichia coli* is the most common isolate. The adhesin FimH is an important virulence factor which contributes to colonization of the urinary tract by uropathogenic *E. coli*.

The objective of this study was to demonstrate that FimH also facilitates binding of *E. coli* to canine endometrium.

Our hypothesis was that disruption of *fimH* expression would lead to a reduction in bacterial binding to uterine epithelial cells. An *E. coli* strain (P4), isolated from a clinical case of canine pyometra, was demonstrated by polymerase chain reaction to carry the gene encoding FimH but no other known *E. coli* adhesins. The chromosomal gene *fimH* was insertionally inactivated with an antibiotic resistance cassette to generate a knock-out mutant (∆*fimH::Kan*). The P4 wildtype strain (wt) and ∆*fimH::Kan* were further transformed with an expression vector encoding for a green fluorescent protein (GFP; Clontech Laboratories, Palo Alto, CA, USA).

Adhesion assays were used to compare the binding of the wt and ∆*fimH::Kan* to canine endometrium *in vitro*. Anestrus uteri from five bitches were obtained from routine hysterectomies and full-thickness samples were collected using a 6 mm biopsy punch. Tissue samples from each uterus were washed separately in PBS and incubated with P4 wt or ∆*fimH::Kan*, or with PBS as a negative control. After washing, tissue samples were either frozen in liquid nitrogen or homogenized and plated on nutrient agar for determination of colony forming units (CFU)/g of tissue. Thin sections of frozen samples were evaluated for the presence of green fluorescent bacteria.

Adhesion of both bacterial strains to the endometrium was observed by fluorescent microscopy but ∆*fimH::Kan* was considerably less adherent than the wt. This finding was confirmed by viable bacterial cell counts as determined by CFU/g tissue. Binding of ∆*fimH::Kan* was only 3% of that of the wt. The mean difference in binding between the two strains on the log10 scale was 2.5 (SD 0.37) (p < 0.001 as per paired t-test). Complementing the mutation in ∆*fimH::Kan* restored the phenotype of the wt binding.

In summary, we demonstrated that disruption of the *fimH* gene in the pathogenic *E. coli* P4 strain significantly reduced bacterial binding to canine endometrium *in vitro*. Future studies targeting uropathogenic virulence factors to prevent binding of *E. coli* to the endometrium might reduce the incidence of pyometra in dogs.

Keywords: Dog, *E. coli*, FimH, uropathogenic virulence factors, pyometra