easy to administer, reversible to allow the owner to change his or her mind or to better organize and control reproduction of his or her pet. Particularly important was that it should be devoid of significant side effects. Our goal was to develop a device responding to these requirements and by using available technologies to reduce development costs.

The development of these implants was realized in four different phases:

1. **in vivo** determination of the minimum effective progestin dose (MED) to control estrus cycles in dogs and cats; (2) definition of a prototype formulation—**in vitro** and **in vivo** releases; (3) clinical validation trials; (4) **in vitro** optimization of the implant and **in vivo** efficacy and tolerance studies.

After 4 years of development, we produced a 2 years contraceptive implant, effective both in dogs and cats and devoid of significant side effects during a 4 years follow-up study. Its contraceptive effects were reversible. The cat implant is $\pm 2$ cm long and 0.24 cm of diameter; the implants for dogs are $\pm 4$ cm long and 0.32 cm diameter. The implant is not associated with any local or general reactions, and, it is easily detected by radiography, allowing its removal when reversibility is needed.

Based on these results, we conclude that progestins administered consistently at low dose still are a viable option for contraception in dogs and cats. This approach also helps to better understand the mode of action of progestins and certainly lead to a new perspective for the use of these agents in pets. This allows us to reconsider the use of older drugs with new perspectives.

**Keywords:** Dog; Cat; Contraceptive implant; Clinical trial

**EVALUATION OF THE “MINITUBE SPERMVISION COMPUTER-BASED AUTOMATED SYSTEM” FOR DOG SEMEN ANALYSIS**

J. Verstegen, E. Jolin, T. Phillips, K. Onclin

University of Florida, Small Animal Reproduction Clinic, P.O. Box 100136, Gainesville, FL, USA

An objective evaluation of semen is required to assess the canine fertility and to select appropriate techniques for semen preservation. With conventional microscopic evaluation, the subjectivity of the analysis results in significant variability. In the present study, we validated the Minitube SpermVision Computer Based-Automated System for objective assessment of canine semen. A description of the fertile canine motility parameters using this analyzer is reported. The repeatability between fields is automatically controlled by the system, which does not allow a variation of more than 20% in the evaluation of any single sample to allow for reliability of the results. The SpermVision is effective over a large range of concentration without major significant differences; however, based on the concentration studies realized, it clearly appears that the ideal range for measurement is probably between 50 and 100 million sperm cells/ml. Highly concentrated semen should then be diluted to fit in this optimum range, if the concentration is lower, variability per field can be too important, if the concentration is too high the effects of sperm cells superposition and sperm collision decrease the reliability of the analyses. The setting up of the system is easy and can rapidly be adapted to any species of interest. The major factor impacting the sperm cell recognition is the light intensity which should ideally check and set up before every analysis. The validity of the measurement over time has been determined with semen preserved at two temperature 20 and 38 °C before analyses at 38 °C. Semen analysis at 20 °C appears to allow for better and longer preservation of non-diluted semen during viability studies reducing significantly semen agglutination observed over time. The makler chamber gave similar results as the leja cell which both were adapted to dog semen evaluation whereas the cell-vu which induced a decrease of all sperm motility parameter was considered as inadapted. Generated from the analysis of six mature fertile Anatolian Shepherd Dogs and pools of semen, the SpermVision analyzer represents a useful tool for andrological studies in dogs.

**Keywords:** Canine semen; CASA; motility parameters

**Equine**

**UTERINE INFLAMMATORY RESPONSE TO FROZEN SEMEN, STREPTOCOCCUS EQUI SUBSPECIES ZOOEPIDEMICUS, OR BOTH AT 72 h POST-TREATMENT IN YOUNG, REPRODUCTIVELY SOUND MARES**

Barbara Hunter, Tal Raz, Allister Grey, Manuel Chirino-Trejo, Claire Card

Western College of Vet. Med., Dept. LACS, Vet. Micro., University of Saskatchewan, Saskatoon, Sask., Canada S7N 5B4

In vivo, bacteria and spermatozoa are simultaneously present or introduced into the mare’s uterus at breeding, however there is little information on the combined