latter group were presented for a variety of reasons, most commonly breeding soundness examination or investigation of sub-fertility. Samples were collected from 50 stallions of various breeds (age range, 3–25 years) using a Missouri model artificial vagina with an in-line gel filter. Volume and sperm cell concentration were measured, and the total number of sperm in the ejaculate calculated. A fixed sample and a stained smear were obtained for sperm morphologic evaluation and cellular analysis respectively. Raw semen (0.13 mL) was added to 1 mL of PBS, and centrifuged (1500 rpm for 10 min). Following aspiration of the supernatant, the sperm pellet was re-suspended in 0.5 mL of lysis buffer to minimize sample deterioration prior to testing. Samples were placed in a 96-well plate and stored at −20 °C until testing. Samples were analyzed for EHV-1 DNA using real-time Taqman PCR. The primers used in this assay target the highly conserved glycoprotein B gene on EHV-1 viral DNA. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used for quality control.

EHV-1 DNA was not detected in any of the samples analyzed. These results suggested that the incidence of EHV-1 shedding in the semen of normal stallions is either very low or non-existent.

Keywords: Taqman PCR; Equine herpesvirus-1; Semen; Stallion
DOI: 10.1016/j.theriogenology.2007.05.024

Food animal

EFFECTS OF rBST ON PREGNANCY RATES OF BEEF COWS SYNCHRONIZED WITH A CO-SYNCH-CIDR PROTOCOL AND INSEMINATED AT FIXED TIME

G. Calderón, M. Tamassia, S. Clark
Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, IL, USA

Recombinant bovine somatotropin (rBST, Posilac, Monsanto, St. Louis, MO, USA) increases milk production, but the effects of this hormone on reproductive performance are controversial. We evaluated the effect of rBST on the conception rates of beef cows synchronized with a CoSynch-CIDR protocol and inseminated at fixed time (TAI). High fertility semen from a single bull was used and TAI was performed by the same technician. Multiparous nursing beef cows (n = 134) were allocated in two groups paired by age, days postpartum, and parity. Sixty-nine cows were in the Spring and 65 in the Fall breeding herd, respectively. Treated cows (T: n = 34 in the Spring and n = 33 in the Fall) received 500 mg of Posilac and Control cows (C: n = 35 in the Spring and n = 32 in the Fall) received sham treatment every 2 weeks, starting 14 days prior to the onset and during the entire spring and fall breeding seasons (60 days per season). All cows were synchronized using a CoSynch-CIDR and TAI protocol as follows: Day 1: an intravaginal progesterone-releasing device (CIDR) inserted and a GnRH injected; Day 8: CIDRs were removed and cows were given PGF2α; Day 11 (66 h after PGF2α injection): TAI and a dose of GnRH. Cows were ≥45 days postpartum at TAI. Pregnancy diagnosis was performed using real time ultrasonography using a 5 mHz transducer at 28, 42 and 56 days after TAI. Pregnancy rate and the effect of season and treatment was analyzed using Pearson’s Chi-Square Test, whereas days open was analyzed using a Student’s t-test for independent samples. There were no significant differences in pregnancy rates at 28 days (Spring: T = 50% versus C = 43%, and Fall: T = 67% versus 56%), 42 days (Spring: T = 44% versus C = 43%, and Fall: T = 67% versus C = 56%) and 56 days after TAI (Spring: T = 38% versus C = 40% and Fall: T = 64% versus C = 56%). However, there was a difference between the mean number of days postpartum and pregnancy rate in the treatment group where cows with fewer days postpartum had higher pregnancy rates (T open = 78.9 days, T pregnant = 72.9 days, P = 0.019). Similar results occurred when season was considered; there was a difference between the mean number of days postpartum and pregnancy rate in the fall group with cows with less days postpartum having higher pregnancy rates (Fall open = 77.4 days and Fall pregnant = 71.8 days; P = 0.011). Despite the fact that the differences were not statistically significant, a trend for an improvement in pregnancy rates in treated cows was observed, especially in the fall breeding season. Treated cows with shorter postpartum had better pregnancy rates, probably due to increased levels of IGF-I improving follicular development and oocyte maturation. Heat stress, increased milk production and decreased dry matter intake in cows treated during spring/summer might explain this difference. In conclusion, treatment of beef cows with rBST in conjunction with CoSynch-CIDR- TAI did not have detrimental effects on pregnancy rates.

Keywords: Somatotropin; Beef cows; Timed artificial insemination
DOI: 10.1016/j.theriogenology.2007.05.025