Methods and Advances in Actuation of Remote Control Valves and Automatic Control Valves on Natural Gas Transmission Pipelines

Mike McQuade
Emerson Process Management Valve Automation
Enormity of the Situation

- The Pipeline and Hazardous Material Safety Administration – Estimate
- Pipeline network in the USA – more than 2 million miles of pipe
- 400,000 miles of large diameter transmission pipelines
- 60% of these pipelines are 40 years old or older
Significant Pipeline Incidents – Gas Transmission

Average more than 50 Significant Pipeline Incidents per year
Heightened Public Awareness
Multiple Press Releases
National Transportation Safety Board

- Investigates pipeline accidents
- Makes official safety recommendations
Basis Of This Presentation

• February, 2012, we were summoned by the NTSB to discuss automated valve technology for gas transmission pipelines

• Seeking actuator control function technology versus a product presentation

• Topics
 – Human intervention vs automatic controls
 – False valve closures
Automated Valves Can Help Mitigate Consequences If An Incident Occurs

• Most fatalities and damage occur in the first few minutes following a rupture.

Incident response time can impact property and environmental damage and possibly injuries and fatalities.
Current NTSB Recommendations

• Develop standards for rapid shutdown of failed natural gas pipelines
• Install automatic or remote operated mainline valves in high consequence areas
Control Options General Overview

• Remote Control Valves (RCV)
 – Remote 2-Way Electric
 • Actuator receives a signal from gas control
 – Electric Fail Safe
 • Actuator reacts upon loss of a signal
 – Pneumatic 2-Way Control
 – Pneumatic ESD loss of pilot signal
General Overview

- **Automatic Control Valves (ACV)**
 - **Low Pressure Shutoff**
 - Actuator reacts automatically to a single pressure setpoint
 - Need to consider transient pressure drops
 - Need to consider the reset dead band

 - **Automatic Linebreak (Pneumatic or Mechanical)**
 - Actuator reacts to an excessive rate of pressure drop
 - Need to account for transient pressure drops
 - Need to consider valve location
General Overview

• Combination Control Functions
 – Automatic linebreak and low pressure shutoff
 – Two way remote control and low pressure shutoff
 – Two way electric and electric failsafe
 – Low pressure shutoff and high pressure shutoff
Pneumatic LineBreak Schematic
Pneumatic LineBreak
Normal Intact Pipeline

PIPELINE

ORIFICE

REFERENCE TANK

DIAPHRAM
Pipeline Ruptures
The Control Reacts To A Rapid Drop In Pressure
Under Normal Operating Conditions

• Major Concern
• False Closure
 – Compressor station coming on/off line
 – Transient pressure changes
 – Pigging operation
Shortcomings Of The Pneumatic Linebreak Control Systems

- The tiny orifice may clog or freeze-off
- R-O-D set points drift as pipeline pressure changes
- There is no adjustable time delay
 - Leads to false valve closures
- There is no memory or stored data
- There is no method to communicate with the actuator
Latest Technology
Microprocessor Based Linebreak Controls

• Guard the pipeline in three ways:
 – Rate of pressure drop
 – Low pressure shutdown
 – High pressure shutdown
Electronic LineBreak Solutions

- The small orifice can clog or freeze off
- Set points drift as pipeline pressure changes

Pressure transducers replace orifices

Set points are stable
Electronic Linebreak Solutions

• Pneumatic Control Problem:
 There is no adjustable time delay

• Solution:
 Electronic linebreak controls have adjustable time delays for all set points
Electronic Linebreak Solutions

• Pneumatic Control Problem: There is no record if an event occurs

• Solution:
 Two memory modes:
 – Data Collect Mode (unarmed)
 – Valve Control Mode (armed)
Additional Performance Features

• Remote communication capability
 – Alarm call out

• These products are generally expandable
 – Additional configurable I/O ports are available

• The control logic can be changed if required
SCADA Systems Aren’t Perfect

• Failure to isolate the rupture
 – Location of sensors and sampling times
• Failure of SCADA system’s communication signal
• Human error
• Security issues
 – Cyber attack
 – Unauthorized access
Questions

Thank You!