Design, Specifications and Future Challenges for Cryogenic Valves

Brandon Bounds
Jim Tesch
Bechtel Oil, Gas, and Chemicals
Valve Manufacturers Association of America 2017 Technical Seminar, Exhibits, and Tour
CRYOGENIC SPECIFICATIONS

Timeline

1984

BS 6364, Specification for Valves for cryogenic service

2006

MSS SP-134, Valves for Cryogenic Service, including Requirements for Body/Bonnet Extensions

2013

ISO 28921-1, Industrial valves - Isolating valves for low-temperature applications, Part 1, Design manufacturing and production testing
CRYOGENIC SPECIFICATIONS

Applications

<table>
<thead>
<tr>
<th></th>
<th>BS 6364</th>
<th>MSS SP-134</th>
<th>ISO 28921-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Standard</td>
<td>British Standards</td>
<td>ASME B16.34, API Specs, as agreed</td>
<td>ISO standards, as agreed</td>
</tr>
<tr>
<td>Minimum Temp., °F</td>
<td>-320</td>
<td>-425</td>
<td>-320</td>
</tr>
<tr>
<td>NPS</td>
<td>$\frac{1}{2}$ - Parent Standard Limit</td>
<td>$\frac{1}{2}$ - Parent Standard Limit</td>
<td>$\frac{3}{8}$ - 36</td>
</tr>
<tr>
<td>Max. Pressure Class</td>
<td>600</td>
<td>1500</td>
<td>1500</td>
</tr>
</tbody>
</table>
CRYOGENIC SPECIFICATIONS

Materials

Valve Body
- BS 6364
 - 300 Series Stainless Steel; Aluminum and Copper Alloys
 - MSS SP-134 and ISO 28921-1
 - Listed in ASME B16.34 and ASME B31.3 (adds Nickel Alloys)

Valve Trim
- Ball - PCTFE seats, Ball same as body
- Gate/Globe/Check - API Trim 12 (316 SS Half Hardfaced)
 - API Trim 16 (316 SS Full Hardfaced)
- Triple Offset Butterfly - 316 SS Disc, Solid Seal Ring

Valve Packing - Graphite
CRYOGENIC SPECIFICATIONS

Extended Bonnets

- Extends valve packing and operator away from cryogenic fluid
- Allows operation in normal working temperature range
- Cast, forged or fabricated with seamless tube
- Minimum extension lengths for non-Cold box/Cold box applications based on valve type, NPS, and temperature (design to worst case)
- ASME B16.34 wall thicknesses
- Stem Design (prevent buckling)
 - MSS SP-134 provides guidance on calculations for stem design
 - ISO 28921-1 requires one stem guide and allows for another
- Minimize clearance between stem OD and extension ID
- Drip plate - prevent condensation from contacting insulation
CRYOGENIC SPECIFICATIONS

Cavity Relief

Gate Valve

Hole in wedge or seat venting to high pressure side (Unidirectional)
CRYOGENIC SPECIFICATIONS

Cavity Relief

Floating Ball Valve

- Hole in ball/seat retainer venting to high pressure side (Unidirectional)
- Self relieving through seats (Bi-directional)
CRYOGENIC SPECIFICATIONS

Cavity Relief

Trunnion Ball Valve

• (2) Single Piston Effect Seats - Vents to low pressure side (Bi-directional)
• (1) Single / (1) Double Piston Effect Seat - Vents through single piston effect seat (Unidirectional)
• (2) Double Piston Effect Seats - External pressure relief (Bi-directional)
CRYOGENIC SPECIFICATIONS

Marking

Typical valve markings *PLUS*

- Valve minimum temperature
- Flow arrow
CRYOGENIC SPECIFICATIONS

Production Testing

• Previously specified by Purchaser → Now minimum sample size required
• Shell and seat testing at room temperature
• System proving test at room temperature
• Cool down with purge gas
• Cycle valve
• Low pressure seat test
• High pressure seat test
• Cycle valve
• External test
• Warm up
FUTURE CHALLENGES

Demand’s Impact on Design

• Higher pressures
 • History has shown that LNG facilities have grown in size resulting in higher pressures

• Larger sizes
 • Sizes continue to increase
 • Availability of large diameter valves
REAL LIFE EXPERIENCES

Installation Issues

Cavity Relief - P&ID
REAL LIFE EXPERIENCES

Installation Issues

Cavity Relief - Operation
REAL LIFE EXPERIENCES

Installation Issues

Cavity Relief - Maintenance
REAL LIFE EXPERIENCES

Installation Issues

Preferred Flow - P&ID
REAL LIFE EXPERIENCES

Installation Issues

Preferred Flow - Operation
REAL LIFE EXPERIENCES

Installation Issues

Preferred Flow - Maintenance
REAL LIFE EXPERIENCES

Valve Issues

• Fortunately no catastrophic failures such as valve casting ruptures
• Leaking valves during production testing (especially modified valves)
• Improper storage
• External debris entering valve body
• Installation - Welded valves
• Dimensional variations
• Operating torque too high
REAL LIFE EXPERIENCES

Valve Issues

Seat/Seal Operational Failure
REAL LIFE EXPERIENCES

Valve Issues

Stem Operational Failure
REAL LIFE EXPERIENCES

Prevention

• Water is not your friend (Avoid, pneumatic test in lieu of hydrotest, other fluids)
• Avoid modifying standard valves to cryogenic valves
• Review non metallic seats/seals closely
• Be aware of changes to service fluid. Changes upstream to feed can impact your facility.