Flexible Operation and Future Options for Fossil Power Generation

Impacts on Valves due to Changing Mission Profile

John Shingledecker, Ph.D
Senior Program Manager, Cross-Sector Technologies
Electric Power Research Institute

Valve Manufacturers Association of America
Engineering Valves in the Extreme
2017 Technical Seminar
Nashville, TN USA
March 2-3, 2017
Introduction to EPRI

Go to www.epri.com for more information
EPRI’s Mission

Advancing safe, reliable, affordable, and environmentally responsible electricity for society through global collaboration, thought leadership and science & technology innovation.
Three Key Aspects of EPRI

Independent
Objective, scientifically based results address reliability, efficiency, affordability, health, safety, and the environment

Nonprofit
Chartered to serve the public benefit

Collaborative
Bring together scientists, engineers, academic researchers, and industry experts
EPRI Membership & Funding

- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States

December 31, 2015

Investor-Owned: 59%
International: 25%
Federal/State: 6%
Municipal: 5%
Cooperative: 4%
Independent Power Producer: 1%
EPRI’s Role

Stimulate innovation; help accelerate technology development
Conducting Research Today

Environment

- Environmental Sciences: Air and Multimedia
- Environmental Sciences: Groundwater and Land Management
- Environmental Sciences: Water and Ecosystems
- Strategic Analysis and Technology Assessments
- Workforce and the Public: Health Assessment and Safety
- Renewables
- Sustainability

Generation

- Advanced Fossil Plants, Carbon Capture, Utilization, and Storage
- Combined Cycle
- Environmental Controls
- Major Component Reliability
- Materials and Chemistry
- Operations and Maintenance
- Power Plant Water Management
- Renewable Energy

Nuclear

- Advanced Nuclear Technology
- Chemistry and Radiation Safety
- Equipment Reliability
- Fuel Reliability
- Long-Term Operations
- Materials Degradation/Aging
- Nondestructive Evaluation and Material Characterization
- Risk and Safety Management
- Used Fuel and High-Level Waste Management

Power Delivery and Utilization

Distribution and Energy Utilization

- Distribution
- Energy Utilization
- Information, Communication, and Cyber Security

Transmission

- Grid Operations and Planning
- Transmission and Substations
Integrated Energy Network: Three Evolving Infrastructures

Using Cleaner Energy and Electrification

Producing Cleaner Energy

Integrating Energy Resources

Integrated Energy Network
A Network of Infrastructures that connects customers with clean energy production and use
EPRI Scenario Planning

Scenario Planning (2006–2007)
- PRISM – Clean Electricity Generation Portfolio
- Demo Projects

Scenario Planning (2012–2013)
- Power System Transformation
- Integrated Grid

Scenario Planning Refresh (Now)
- Stress Test PRISM
- Integrate Grid

Align the R&D Portfolio and Business Model with Vision of the Future
Scenarios Define the Envelope of Plausible Futures

Economic Recession: A future with sustained low or negative trending economic growth (GDP) and/or global conflict.

Consumer Drive: A future where consumer desire for continuous improvement in quality of life dominates the focus of new products.

Fossil Fuel Abundance: A future where fossil fuels remain low cost and supply is abundant, recognizing that supply differs among global regions.

Deep Decarbonization: A future where international agreement that significant changes are needed to address climate change leads to a push for even cleaner energy.

Each scenario is defined by five markers:
1. Fossil Fuel Price
2. Energy and Environmental Policy
3. Demand for Grid Supplied Electricity
4. Technology Innovation
5. International Impact
Global Points of View

Energy and Emission
- Reducing emission will remain a long-term global issue
- Overall global energy demand will grow – flat/declining in OECD; growth in non-OECD

Efficiency and Renewables
- Energy use and GDP will continue to decouple as efficiency gains across all energy use
- Renewable technology cost will decrease and global penetration level will continue to increase

Customer Expectations
- Choice, control, comfort, and convenience will be primary drivers
- The internet of things will digitally connect every customer with every thing
- Increased dependence on electricity will demand higher reliability and quality and higher energy infrastructure resiliency against physical/cyber/natural disaster

Water
- Increasingly water-constrained future over the long term
- Water energy interfaces will continue to expand

Black and White Swans…
Expect the Unexpected
Low-carbon Generation Plus Electrification by 2050

Generation (TWh)

- **Coal**
- **Gas**
- **Gas-CCS**
- **Nuclear**
- **Hydro+**
- **Wind**
- **Solar**

Significant changes after 2030

Capacity (GW)

- **Peak Load**
- **Residual Peak**

Just One Potential Scenario
Illustrative U.S. Scenario of 70% Emission Reduction by 2050

Final Energy

CO₂ Emissions
(from final energy and electric generation)*

- **Reference**: Elec 4757 TWh, Gas 3004 TWh, Oil 53 TWh, Other 22 TWh
- **Low-Carbon**: Elec 6804 TWh, Gas 2062 TWh, Oil 122 TWh, Other 22 TWh

- **43% Increase in Electric Generation Compared to Reference Case**

- **70% Decrease in Economy-wide CO₂ Emissions Compared to Reference Case**

Efficiency and Electrification Key to Emission Reduction
Pathway to 2050 – The Need for New Technologies

Generation IV Nuclear
(co-production – electricity, hydrogen steam)

High-Altitude Wind

Large-Scale Storage
(e.g., Regenesys Flow Battery)

Coal and Gas Carbon Capture and Sequestration

Gen III Photovoltaic (PV)
(e.g., High power density PV cells)

Source: Carbon Capture Image – htc02systems.com; Gen IV Image – KAERI
Electrification is the Pathway to Economy-wide CO$_2$ Reductions
Changes in Fossil Power Generation

Near and Transformative Challenges
Flexibility – A New Reality for Powerplants
(Example from CAISO impact of Increasing Solar PV)

CAISO – 2012 Actual Net Load Demand

- Baseload Demand: 18,000 MW
- Peak Ramping Rate: ~1000 MW per hour
- Peak Demand: 24,000 MW
- Daily Total Energy: 498,000 MWh

CAISO – 2020 Modeled Net Load Demand

- Baseload Demand: 12,000 MW
- Peak Ramping Rate: >5000 MW per hour
- Peak Demand: 26,000 MW
- Daily Total Energy: 459,000 MWh

Net Load: Actual Power Demand on the Grid, less the power provided by non-dispatchable generation (e.g. solar and wind)
Some Effects of Flexibility and the Changing Mission of the Fossil Fleet (Existing and New Units)

- **Reduction in overall Output** = Less money/MW = improved needs for maintenance optimization/cost reduction & sensor technologies
- **More low-load operation** = reduction in efficiencies = component operation and damage challenges
- **More rapid start-ups** = more component damage
- **More cycling** = more wear and tear
Extreme Conditions are Required for Future Power Plants to Reduce CO₂ Emissions

Increased Efficiency is a Least Regret Strategy for CO₂ Reduction

Studies show A-USC = 10-35% reduction in CO₂ compared to current plants
New Power Cycles: Supercritical CO\textsubscript{2} (sCO\textsubscript{2}) Brayton Cycles

Similar conditions to A-USC Boilers/Turbines

NET Power Cycle 25MW Demo
- Gas-Fired 100\% Carbon
- Capture Modified CO\textsubscript{2} Brayton Cycle utilizing Inconel 740H for High-Temperature CO\textsubscript{2} piping

CO\textsubscript{2} Critical Properties:
- Temperature: 31°C (88°F)
- Pressure: 74 bar (1055 psig)
- Compressibility Factor: 29\% @ 38°C, 76 bar

Advantages: High Efficiency, Small Turbomachinery

Challenges: Materials, Heat Exchanges, Erosion

Partners: NET Power, CB&I, Toshiba, Exelon

© 2016 Electric Power Research Institute, Inc. All rights reserved.
EPRI Materials R&D to Enable the Valves for the Changing Mission

Acknowledgements:

Daniel Purdy & David Gandy, EPRI

Our many EPRI members who contributed materials, samples, and financial support for this R&D
What does this flexible operation mean for high-temperature materials in valve components?

- **New Damage Modes**
 - Industry challenges with hardface disbonding

- **More Erosion**
 - Higher-velocities during part-load operation
 - More oxide spallation

- **More Oxidation**
 - Higher-temperatures

- **More Wear**
 - Less static and more dynamic operation

- **Alternative Material Solutions are Needed for Todays and Tomorrows Plants**
Recent Experience in Combined Cycle Plants

- Numerous Reports on valve hardfacing disbonding
 - Significant cracking reported
 - No trend with operating hours
 - Not one design or manufacturer

- 20 sites document in EPRI survey
 - Many more undocumented by word of mouth and multiple failures at same site

- Disbonding hardfacing can lead to damage downstream
 - Replacement / refurbishment of valves
 - Lost generation
 - Damage to other components

- HP Steam-Turbine Blade Damage from ‘Liberated’ Hardfacing

Type 1 – Disbonding between substrate and hardfacing
Type 2 – Transverse (through-hardfacing) cracking
Why now?

Traditionally:
- Large Coal-Fired Boilers
 - Few transients (base load)
 - Moderate temperatures (<1000F, <538C)
 - Grades 11 and 22 (CrMo)
 - Simple piping systems

- Processing
 - Traditionally SMAW and GTAW

What has changed?

Recently:
- More combined cycle plants
 - Faster startes
 - Higher temperatures (>1000F, >538C)
 - Higher alloys (Grade 91: 9Cr1Mo)
 - Complex piping and operation: (ex: 2on1 operation)

- Processing
 - Increased use of auto-PTAW

Application space for Co-based hardfacing is expanding:

Higher temperature operation a significant contributor.
Project Summary

- Conclusion of 3 year EPRI study
 - Utility and OEM member engagement
 - Over 20 donated parts
 - 9 thorough ex-service evaluations + 12 historical reports

- Technical work completed

- Several reports available
 - Manufacturing guideline (3002004990) published and in use
 - Field experience overview (3002004991) released March 2015
 - Detailed analyses for avoiding this issue (3002004992) Dec. 2015

- Currently in field validation phase
Background on Test Methods for High-Temperature Erosion

- ASTM G211 (2014)
- First High-Temp. Erosion Test Standard
 - Result of EPRI Sponsored Round Robin Test Program
 - 7 Labs, 2012 EPRI Workshop

3D Laser Profilometry: full area scan

- Analyze for texture, surface roughness
- Max depth and volume loss calculations
- 5 nm special resolution
- Process takes only minutes but gives high resolution data in air

Application to Erosion, sliding wear, and galling
Plasma-Enhanced Magnetron Sputtering (PEMS) Nanocoatings

- Nano-scale grain structure from PEMS
 - Dense, thin; very hard and tough
 - Improved erosion / wear / oxidation properties compared to conventional coatings (room temp)

- EPRI studying TiSiCN coatings up to 20 µm (0.0008 inches) in thickness
High-Temperature Solid Particle Erosion Testing

- ASTM G211; 210 m/s (650 ft/s), 625°C (1150°F)
- 30° incident, Fine Chromite ~50µm

<table>
<thead>
<tr>
<th>Material</th>
<th>Baseline 410SS</th>
<th>Alloy 901</th>
<th>Alloy 718</th>
<th>Waspalloy</th>
<th>TiSiCN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>2.31</td>
<td>3.23</td>
<td>3.23</td>
<td>3.00</td>
<td>0.033</td>
</tr>
<tr>
<td>Nitrided</td>
<td>3.30</td>
<td>3.14</td>
<td>3.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Industry Standard Nitriding for Surface Hardening has Little Effect on High-Temp. Erosion; Nano-coating was not Breached
TiSiCN Nanocoatings Field Trial

- Original part (nitrided) operated for 15,000 hours over 12 starts
 - Experienced 30% loss of cross section (0.15”)
- Replaced with 20 µm TiSiCN Nanocated stem of same geometry
- Operated for 17,000 hours and 11 starts
 - Sample shows damage but more resilient than without coating
 - Appears that erosion localizes once the coating is broken

Additional optimization and field trials ongoing due to promising results

<table>
<thead>
<tr>
<th></th>
<th>Area Measured (mm²)</th>
<th>Eroded Volume (mm³)</th>
<th>Eroded Volume per 100mm² (mm³)</th>
<th>Average Depth of Erosion (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Stem (no coating)</td>
<td>49</td>
<td>303</td>
<td>618</td>
<td>6.2</td>
</tr>
<tr>
<td>Stem with 30 micro thick nanocoating</td>
<td>75</td>
<td>194</td>
<td>259</td>
<td>2.6</td>
</tr>
<tr>
<td>Improvement in Erosion Resistance due to coating</td>
<td></td>
<td>1.6</td>
<td>2.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Oxidation & Wear R&D
State of the Industry - Materials

- Alloy selection stagnant in the industry
 - Decades of experience in *non-flexible* operation
 - Selection based primarily on temperature
- Nitriding surface treatment popular
 - Provides excellent sliding wear, anti-galling, and low friction
 - What about oxidation?

<table>
<thead>
<tr>
<th>General Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitr alloy 135M – (135M Nitrided)</td>
</tr>
<tr>
<td>AISI Type 410 Stainless Steel – Nitrided</td>
</tr>
<tr>
<td>AISI Type 422 Stainless Steel – Nitrided</td>
</tr>
<tr>
<td>EME – Nitrided</td>
</tr>
<tr>
<td>ASTM A 453 Gr 651 (19-9 DL) – Nitrided</td>
</tr>
<tr>
<td>Incoloy 901 – Nitrided</td>
</tr>
<tr>
<td>Siemens-Westinghouse</td>
</tr>
<tr>
<td>Nitr alloy 135M – (135M Nitrided)</td>
</tr>
<tr>
<td>AISI Type 422 Stainless Steel – Nitrided</td>
</tr>
<tr>
<td>AMS 5700 – Nitrided</td>
</tr>
<tr>
<td>Incoloy 901 – Nitrided</td>
</tr>
<tr>
<td>Refractalloy 26 – Nitrided</td>
</tr>
<tr>
<td>W-545 – Nitrided</td>
</tr>
</tbody>
</table>

EPRI Report #1016786

422: Nitride Thickness 260μm (10mil)
901: Nitride Thickness 60μm (2.4mil)
Increasing Flexible Operation has Resulted in Valve Operation and Reliability Challenges

- High temperature oxidation, a.k.a. Blue Blush
- Build up of oxide scale during operation
 - Affects clearances – tight to begin with
 - Can lead to valve sticking
 - Requires inspection and maintenance
- Want best possible operational dependability
Oxidation of Candidate Materials:

Steam Oxide Thickness and Morphology (625-650°C)

<table>
<thead>
<tr>
<th>Material</th>
<th>500h</th>
<th>1000h</th>
<th>2500h</th>
<th>3000h</th>
<th>4000h</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>50μm</td>
<td></td>
<td>Irregular nodule formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>901N</td>
<td>50μm</td>
<td></td>
<td>GB Penetration, 60 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>901T</td>
<td>50μm</td>
<td></td>
<td>Slow Growth on top of TiSiCN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASP</td>
<td>10μm</td>
<td></td>
<td>Uniform scale growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASPN</td>
<td>50μm</td>
<td></td>
<td>Uniform scale growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>718</td>
<td>10μm</td>
<td></td>
<td>Uniform scale growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>718N</td>
<td>50μm</td>
<td></td>
<td>Uniform scale growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>740</td>
<td>10μm</td>
<td></td>
<td>Uniform scale growth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitriding results in thicker oxide scales

Alternative nickel-based alloys show improved performance to 901
Higher-Temperature Operation: Wear Concerns Evaluated Materials

- Coatings manufacturers surveyed for “best candidate”
 - High temperature performance wear resistance 600 - 800 °C
 - Exceed capability of Stellite 6 (at 600 °C) - Baseline
- Applied to IN625 plate as substrate
- Testing performed on CSM High Temperature Tribometer
 - Capable up to 1000 °C
 - Volume loss measurements via 3D Laser Microscopy

<table>
<thead>
<tr>
<th>Material</th>
<th>Coating Process</th>
<th>Thickness µm (in)</th>
<th>Nominal Chemistry wt%</th>
<th>Hardness HV 500g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellite 6, PM-HIP</td>
<td>N/A</td>
<td>N/A</td>
<td>30 Cr, 5 W, 1.1 C, Bal Co</td>
<td>480</td>
</tr>
<tr>
<td>Diamalloy 4060NS</td>
<td>HVOF</td>
<td>770 (0.030)</td>
<td>28.5 Cr, 4.5 W, 1.1 C, 1.6 Si, Bal Co</td>
<td>570</td>
</tr>
<tr>
<td>WOKA 7103</td>
<td>HVOF</td>
<td>450 (0.018)</td>
<td>80% Cr₂C₃ + 20% (80 Ni, 20 Cr) matrix</td>
<td>970</td>
</tr>
<tr>
<td>Stellite 728</td>
<td>PTAW</td>
<td>5,000 (0.2)</td>
<td>24 Cr, 12 Mo, 6 Ni, 1.5 Nb, Bal Co</td>
<td>420</td>
</tr>
<tr>
<td>Triballoy T800</td>
<td>PTAW</td>
<td>5,000 (0.2)</td>
<td>18 Cr, 30 Mo, 3 Ni, 0.1 C, 3.5 Si, Bal Co</td>
<td>670</td>
</tr>
</tbody>
</table>
Example: Data Analysis on High Temperature Wear

- 3D Scans capture deepest point of the wear scar
- Stellite 6 shows poor wear resistance at higher temperatures
- Best performance goes to Diamalloy and WOKA

- Low CoF necessary for minimizing actuator size
- Stellite 6 is at about 0.3 at 600 °C
- Only WOKA and Stellite 728 show the same performance
EPRI Major Effort on Adoption of Powder-Metallurgy Hot Isostatic Pressing (PM-HIP) to Power Industry

- **PM HIP Advantages:**
 - Uniform structure = **Inspectibility**
 - **Near-net shaped** large components
 - Ability to **functionally apply materials**
 - Alternative manufacturing route

- **EPRI Led Efforts**
 - (2) FIRST EVER ASME B&PV Code Cases:
 - Allows PM-HIP for specific materials (now working on general application to all materials)
 - Engage supply chain
 - Major data development project
 - Confirmed inspectability
 - Demonstrations for advanced manufacturing (nuclear focus) – lowering costs, larger components, etc

- **Partners:**
 - Carpenter, BodyCote, Sandvik, Synertech, Erasteel, Tyco-Crosby, GE-Dresser, Areva, GEH, RR, Westinghouse, and others
Summary of EPRI Metallurgical Studies

- Flexible operation and the need for higher efficiency result in the need for more extreme valve material performance
- Testing by EPRI has shown
 - High-temperature erosion resistance can be improved by coatings with initial field trials in progress
 - There are alternative materials to today nitrided valve stem materials which show improved oxidation resistance which should lead to improved operational performance
 - Alternatives to Stellite 6 will need to be considered for wear behavior tomorrow’s power plants
 - Powder metallurgy processing is now code approved and opens new avenues for materials R&D
Final Summary

▪ The power generation industry and the entire *integrated energy network* will go through a major transformation over the next 30 years

▪ Currently flexible operation is changing the mode of operation and the mission of the fossil fleet

▪ Future plants will challenge materials and components with higher temperatures and more extreme conditions

▪ From the standpoint of valve components: the future clearly will require components capable for these extreme environments
Together…Shaping the Future of Electricity