Hazen

Hydraulic Considerations in Pumping System Design

VWEA Wastewater Operations Education Conference Roanoke Virginia July 14, 2016

A16_Rogers_Hydraulic Considerations in Pumping System D

Agenda

- Basics of Hydraulics and Pump Operation
- Pumping System Design Process
 - Types of Pumps
 - System Curve Development
 - Pump Station Layout
 - Pump Selection Considerations
 - Hydraulic Concerns
- Case Studies
- Summary
- Questions

:A16_Rogers_Hydraulic Considerations in Pumping System De

Abbreviations and Acronyms

- BEP best efficiency point
- BHP brake horsepower
- fps or ft/sec feet per second (velocity)
- FM force main
- gpm gallons per minute (flow)
- H Head (feet)
- HP horsepower
- n rotational speed
- NPSH_A net positive suction head available
- NPSH_R net positive suction head required
- psi pounds per square inch (pressure)
- Q Flow Rate (gpm, mgd, cfs...)
- rpm revolutions per minute
- TDH total dynamic head

16_Rogers_Hydraulic Considerations in Pumping System D

Basics of Pump Operation

- A pump lifts fluid from one elevation to another
- Work is needed to lift fluid
- Work is independent of type
 - Human Power
 - Animal Power
 - Wind Power
 - Steam Power
 - Electrical Power
- Pump can lift continuously or in increments
- Take-away:
 - Higher lift requires more work
 - Higher flow requires more work
 - Faster work requires more power

A16_Rogers_Hydraulic Considerations in Pumping System

Pressure Head (Head)

- Pumps deliver fluid against pressure
- Pressure = Force / Area (psi)
- Head (feet) is commonly used to express pump operating pressure
- A 2.31 foot high column of water exerts a pressure equal to 1 psi
- i.e. Car tires ~ 35 psi = 81 feet of head

Closed Conduit Flow (Q)

- Volume of fluid passing per time (gpm, mgd, cfs...)
- Q (cfs) = Area (ft²) x Velocity (fps)
- For a given flow, the smaller the conduit the larger the velocity.
- Higher velocity translates into increased frictional

headloss

Total Dynamic Head (TDH)

- TDH is the total amount of head a pump must operate against to deliver wastewater to a desired location
- TDH = Static Head + Head Loss (HL)
- Static Head exists when pump is on or off
- Head Loss exists only when fluid is pumped

Static Head

For free surfaces:

- Static Head = Discharge Tank WSEL Suction Tank WSEL
- Static Discharge Head = Discharge Tank WSEL Pump CL
- Static Suction Head = Suction Tank WSEL Pump CL

Suction Lift – Negative Suction Head

Flooded Suction – Positive Suction Head

Dynamic Head (Head Loss)

- Energy dissipated due to friction and turbulence during pump operation
- Major Losses (Friction Losses)
 - Due to friction between pumped water and inner surface of piping
 - $H_f = 3.02 L D^{-1.167} (V/C_h)^{1.85} (Hazen-Williams Formula)$ where:
 - L is length of pipe (feet)
 - D is diameter of pipe (square feet)
 - V is mean velocity (fps)
 - C_h is Hazen-Williams friction coefficient (new up to 140 and old as low as 80)
- Minor Losses
 - Due to turbulence at bends, fittings, valves, etc.
 - $H_f = K (V^2/2G)$ (Headloss factor times velocity head)

	Loss in Terms
Nature of Special Resistance	Multiple of V ² /2g
n i (Mal of small and)	
Reducers (Vel. of small end)	0.25
Ordinary	0. 10
Bellmouthed	
Standard	0.04
Bushing or coupling	0.05 - 2.0
9	17.
, , , , , , , , , , , , , , , , , , ,	
Tee	1 50
Standard	1.50
	1.80
Ditto	1.80
a contract of the contract of	
	1.80
Standard 1	1.80
(through side outlet)	\
100	. 60
Standard	.00
(run of Tee)	
1 112	.90
Run of Tee Reduced 1/2	.75
Run of Tee Reduced 1/4	
90° Bend	
Short radius elbow	. 9
(screwed fittings)	
(screwed littings)	2
Medium radius elbow	.75/
(screwed fitting)	
(screwed litting)	
Long Radius 'elbow (screwed)	.60
(See p. la for flanged fittings)	72
(See also values for Losses	
in Conduits)	
in Conduits)	
Square Elbow (See also p. la)	8
Intersection of two cylinders,	1.25
corners not rounded at outside	
	l v
nor inside.	1
e.g. welded pipe	
Ditte	1.8
Ditto	1
Return Bend (screwed) See also p. la	2. 2
Ketatii Daile	
45° Bend (See also p. la)	.42
Also General rule to use 3/4	
of loss for 90° bend of same	
radius.	
Standard 45° Bend (4-18")	0, 20 - 0, 30

u.6_Rogers_Hydraulic Considerations in Pumping System D

Net Positive Suction Head (NPSH)

- NPSH_A = Atmos. Head + Static Suction Head Suction HL
 - Standard atmospheric pressure = 14.7 psi (34 ft. head)
- Net Positive Suction Head Required (NPSH_R)
 - Furnished by pump manufacturer pump specific
 - Increases with pump flow
- $NPSH_A < NPSH_R \rightarrow Cavitation$
 - Typically occurs in systems with static lift
 - Could occur in flooded suction scenario with extremely long lengths of suction piping
- Insufficient submergence can lead to vortexing

A16_Rogers_Hydraulic Considerations in Pumping System

Work & Power

Work

- A force does work when it acts on a body over a distance
- Units of foot pound (ft-lb)
- Wastewater pumps do work to move the wastewater

Power

- Rate of work done (ft-lb/s)
- Wastewater pumps most often do work by using electric motors
- Motors are commonly rated by horsepower (hp)
- 1 unit of hp is equal to 550 ftlbs/s

The Pumping System Design Process

- Collect information
- Determine type of pump to be used
- Develop station layout
- Develop system curves
- Select pumps that match the system curves
- Write your specification
- Coordinate
- Finalize the design

- What type of fluid is to be pumped?
 - Fluid properties: density, viscosity, solids content, temperature
- From where to where?
 - System characteristics: friction and minor losses, suction lift, static head, other pumps operating simultaneously
- How much what are design flowrates?

A16_Rogers_Hydraulic Considerations in Pumping System I

Determine Type of Pump

- Flow and head requirements
- Type of fluid, solids content
- Site conditions
 - Footprint and headroom constraints
 - Subgrade conditions
 - Elevation constraints
 - Suction and discharge inverts
 - Suction head available

More than one type may work - what's best for the specific application and owner preference?

Types of Pumps

- Kinetic (Rotodynamic) Pumps
 - Energy is imparted to the fluid by a rotating impeller which increases the flow velocity and converts to a pressure increase upon exit.
 - Can be safely operated under closed valve conditions (for short periods of time).
 - Three Types:
 - Radial-flow pumps (Centrifugal Pump) higher pressures and lower flow rates than axial-flow pumps.
 - Axial-flow pumps lower pressures and higher flow rates than radial-flow pumps.
 - Mixed-flow pumps A compromise between radial and axial-flow pumps operate at higher pressures than axial-flow pumps while delivering higher discharges than radialflow pumps.

Positive Displacement (PD) Pumps

- PD pumps physically displace fluid
- Closing a valve downstream can lead to continual pressure build up and failure of pipeline

Progressing Cavity Pumps

- Flowrate fixed to speed
- Capable of pumping highly viscous stream
- Commonly used in sludge and slurry pumping applications
- Operates at high pressures
- Must avoid running pump dry

A16_Rogers_Hydraulic Considerations in Pumping System De

Centrifugal Pump

A centrifugal pump lifts fluid from one elevation to another by continuously adding kinetic energy (accelerating the fluid) using a rotating impeller

.6_Rogers_Hydraulic Considerations in Pumping System De

Common Types of Centrifugal Pumps for Water and Wastewater

- Horizontal Split Case Pumps
- Vertical Turbine Pumps
- End Suction Pumps
 - Closed impeller
 - Non-Clog pumps
 - Submersible non-clog pumps

/EA16_Rogers_Hydraulic Considerations in Pumping System Desi

Horizontal Split Case

<u>Applications</u>

- Water treatment:
 - Raw Water
 - High service pumping
 - Transfer pumping
- Wastewater treatment:
 - Reuse filter feed
 - Reuse distribution
 - Treated effluent pumps

Configurations

- Horizontal motor
- Vertical motor
- Single or two stage
- Dual diesel / electric drive

Characteristics

- Wide flow range
- Heads to ~500 ft. for single stage, higher for two-stage
- High efficiency (85-95%)
- Ease of maintenance
- Flat curve

Vertical

A16_Rogers_Hydraulic Considerations in Pumping System De

Vertical Turbine

Applications

- Water treatment:
 - Raw water pumps
 - Groundwater pumps (submersible)
 - Membrane feed pump
 - Filter backwash pump
 - High service pumps
 - Transfer pumps
- Wastewater treatment:
 - Reuse filter feed
 - Reuse distribution pumps
 - Treated effluent pumps
 - VTSH (vertical turbine solidshandling)

Characteristics

- Wide flow range
- Wide head range add stages for higher head
- Steep curve
- Very compact footprint
- Prone to vibration
- Difficult to service

Configurations

- Can-type
- Wetwell-mounted
- Submersible

End Suction

<u>Applications</u>

- Water treatment:
 - Booster Pumping
 - Filter Backwash
 - Membrane Feed
 - Chemical Feed
 - Raw water
- Wastewater treatment (non-clog impellers):
 - Sewage lift stations
 - Raw sewage pumps

Characteristics

- Low to Medium flow
- High head add stages
- Curve shape varies

- Vertical save space or to mount motor above flood elevation
- Horizontal provides good access and saves head room
- Close-coupled (single pump/motor shaft)
- Direct coupled (motor shaft connected to the pump shaft by a shaft coupling)
- V-belt drive
- Extended shaft
- Submersible

End Suction Pumps – Wastewater

- Heads to ~250 ft. for a single stage
- Best efficiencies 70-75%
- Impeller options:

Channel Impeller

(enclosed, 1-3 vanes)

Sewage lift station typical application

Semi-Open Impeller

Vortex Impeller (recessed impeller)

Grit and sludge pumping typical applications

Solids handling performance improves

Hydraulic efficiency increases

A16_Rogers_Hydraulic Considerations in Pumping System [

Pump Type Selection Example – Griffith RWPS

Selected horizontal split-case pumps – why?

- Had available land area and suction head
- Rock subgrade
- Suitable curve shape
- Owner preference
- Ease of maintenance

Centrifugal Pump Summary

- Larger impellers Greater flow and head
- Greater Speed Greater flow and head
- Larger, slower impellers are more efficient but cost more
- Pumps in parallel more flow at same head
- Pumps in series higher head at same flow
- Generally, power increases as flow increases to run out
- Best efficiency point (BEP) is at max of efficiency curve

Centrifugal Pumps - Points to Watch

- Rotational speeds ≤ 1,800 rpm
 - Non-clog in particular
- Flooded suction no priming needed
- Curve shall continually rise to shut off
- Steeper pump curves are best for VFDs
- Duty point to be ~75% Q_{max}, close to BEP
- Aim for efficiencies > 75% single stage
- Size motor HP for "run out" or maximum power NOT duty point

A16_Rogers_Hydraulic Considerations in Pumping System De

Station Layout - Where to Start?

- Resources
 - Hydraulic Institute (HI) Standards, other references
- Consider constraints site, budget, etc.
- Collect/develop information needed to create system curves
 - Elevations of suction, pump room floor, high points, discharge
- For retrofits, survey/measure existing elevations, test existing pumps for flow and pressure
 - Develop piping system layout, list of minor losses

Station Layout Considerations

- Provide sufficient work space between pumps
- Use largest pump and motor dimensions (now or future)
- Allow for expansion
- Think through process of installing/removing pumps and valves
 - Size crane and openings for heaviest / largest single item in the station
 - Ensure crane can reach everything it needs to lift
 - Consider need for portable hoists or truck access, etc. when selecting pump spacing, sizing hallways
- Involve operations and maintenance staff early

_Rogers_Hydraulic Considerations in Pumping System Desi

Layout - Hydraulic Institute Standards

- American National Design Standards for Pump Intake and Centrifugal Pumps
- Wetwells different designs for clear and solids-bearing liquids
 - Provide steady, uniform flow with minimal flow disturbances
 - Keep solids entrained
- Piped intakes recommended piping configurations, velocity limits
- Canned vertical turbine pumps geometry and velocity specifications
- No flow disturbing fittings within 5 pipe diameters of suction
 - Long-radius bends and full-port valves are not considered flow disturbing

Points to Watch – Suction and Discharge Piping

- Suction pipe velocities ≤ 6 ft/s
- Delivery pipe velocities ≤ 8 ft/s
- Avoid applying forces (especially unbalanced ones) to pumps via piping and valves
 - Provide pipe supports
 - No horizontal bends near pumps
- Use long radius elbows for vertical suction bends
- Avoid creating high points
 - On suction, use eccentric reducers with flat side up
 - Continuously rising discharge pipe alignment
- Provide isolation valves
- Include restrained flexible couplings
- Pipe/flanges rated for worst case pressures, including surge / test pressures

Developing System Curve

System Curve Worksheet

Example P	ump Sta	ition						
Force Main Conditions:				Н	azen-Willia	ams C:	120	
Flow Scenario:			ADF(mg	(k	0.875F	Peak (mgd)	2.5	
Number of								
Pumps=		1						
Fumps= Total Statio								
Head=		102.42			\sim	oofficients	for Flow Lin	nite-
102.42				Coefficients for Flow Units=				
	Flow U	Jnit=	SPM			CFS	GPM	MGD
	Fr	ic=	10.557			851527	10.557	1908780
	Fo	rm=	0.002594			522.55	0.0025936	1250.6
DEFINE PI	IPE SYS	TEM						
Pipe Di	a. Le	ength						
Reach (in		•	ł&W C	Frac Q	S	um K k	(f	Km
Α	10	11	120		1	1.27	2.231E-07	3.294E-07
В	8	12	120	ı	1	5.54	7.214E-07	3.508E-06
С	16	9	120	ı	1	2.24	0.000E+00	0.000E+00
D	14	2949	120	ı	1	6.85	1.162E-05	4.625E-07
E	14	2625	120	1	1	2.2	1.034E-05	1.485E-07
SYSTEM CURVE								
Total						k	(f*Q^1.85	Km*Q^2
Flow TD	DΗ			NPSHa		F	riction	Form
gpm ft				ft		L	osses	Losses
	296.42			33.9	-		0.00	
	297.03			33.9	7		0.34	_
500 2				33.8	-		1.24	
750 3	750 301.45			33.76			2.62	
1000 305.17			33.58			4.46 4		
1250 309.87			33.36			6.73 6		
1500 315.53			33.08			9.44 9.		
1750 3	322.13			32.7	76		12.55	13.17
2000 3	329.68			32.3	39_		16.07	17.20

Minor Losses in Pipe Rea	ach Pump 1
A. Suction-10" inside PS	
Minor loss type	K-value
slightly rounded entrance	0.23
gate valve	0.19
90° elbow	0.3
10x5" reducer	0.25
90° elbow	0.3
A. Subtotal	1.27

The Pump Curve

System Curve Considerations

Curves – Pumps in Parallel

Curves – Pumps in Series

46_Rogers_Hydraulic Considerations in Pumping System Des

Affinity Laws - Variable Speed

$$Q2 = Q1 * \frac{N2}{N1}$$

$$H2=H1 * \frac{N2}{N1}^{2}$$

		rer Pump											
Curves Goulds 3316 6x8-17				Adjusted Pump Curves									
	86	Curve Speed		95.0	% Speed	90.0	% Speed	85.0	% Speed	80.6	% Speed	75.0	% Speed
	.00	Max Impeller		1697	RPM	1607	RPM	1518	RPM	1440	RPM	1340	RPM
	.25	Curve Impeller									1		
	m	TDH	Efficiency	gpm	TDH	gpm	TDH	gpm	TDH	gpm	TDH	gpm	TDH
1,5	560	397	69	1,482	358	1,404	322	1,326	287	1,257	258	1,170	223
1,5	500	412	71	1,425	372	1,350	334	1,275	298	1,209	268	1,125	232
1,4	100	437	74	1,330	394	1,260	354	1,190	316	1,128	284	1,050	246
1,3	300	457	76	1,235	412	1,170	370	1,105	330	1,048	297	975	257
1,2	200	477	76	1,140	430	1,080	386	1,020	345	967	310	900	268
1,1	100	492	76	1,045	444	990	399	935	355	887	320	825	277
1,0	000	507	75	950	458	900	411	850	366	806	329	750	285
90	00	520	73	855	469	810	421	765	376	725	338	675	293
80	00	532	70	760	480	720	431	680	384	645	346	600	299
70	00	542	66	665	489	630	439	595	392	564	352	525	305
60	00	552	62	570	498	540	447	510	399	484	359	450	311
50	00	560	56	475	505	450	454	425	405	403	364	375	315
40	00	567	49	380	512	360	459	340	410	322	368	300	319
30	00	572	40	285	516	270	463	255	413	242	372	225	322
20	00	577	30	190	521	180	467	170	417	161	375	150	325
10	00	582	18	95	525	90	471	85	420	81	378	75	327
()	587	_	0	530	0	475	0	424	0	381	0	330

Operating Outside of POR/AOR

- Several issues occur when operating outside these ranges:
 - Recirculation
 - Excessive Noise
 - Excessive Vibration
 - Cavitation
 - Pump Damage

- Results when liquid is subject to rapid changes of pressure that cause the formation of cavities where pressure is relatively low
- The formation and collapse of cavities or gas pockets can cause mechanical damage to impeller
- Accompanied by loud noises
- Caused by insufficient NPSH

EA16_Rogers_Hydraulic Considerations in Pumping System Des

Net Positive Suction Head (NPSH) – Avoiding Cavitation

NPSH_A – Total suction head available at the pump inlet

$$NPSH_A = h_{atm} + h_{ss} + h_{vs} - h_l - h_{vap}$$

Where:

- h_{atm} = atmospheric pressure head (~34 ft)
- h_{ss} = static suction head
- h_{vs} = suction velocity head ($v^2/2g$)
- h_I = headloss (friction + minor losses) in suction piping
- h_{vap} = vapor pressure head of liquid being pumped (table lookup based on pressure, temp Ex. 1.18 ft. for water at 1 atm and 80° F)
- NPSH_R net positive suction head required, as published by manufacturer
 - Defined by HI as the NPSH that causes the total head of the pump (or 1st stage of pump if multi-stage) to be reduced by 3% at a specific rate of flow
- NPSH Margin (NPSH_A/ NPSH_R) 1.1 to 2.0 (ANSI/HI)

Example of NPSH_A/ NPSH_R

:A16_Rogers_Hydraulic Considerations in Pumping System [

Correcting NPSH Problems

- Increase wetwell level or supply pressure
- Lower pump elevation
- Reduce headloss in suction piping
 - Check for blockages in pipe
 - Ensure that valves are operating correctly
 - Increase diameter of suction piping
 - Use long-radius bends
- Select (or run at) a lower speed pump
- Choose pump with larger suction diameter

416_Rogers_Hydraulic Considerations in Pumping System

Water Hammer

- Also known as hydraulic shock or surge
- An oscillation in pressure resulting from a rapid increase or decrease in flow (stopping pump, closing valve)
- Causes serious mechanical damage and loud noises
- Surge valves can help minimize water hammer

Water Hammer

Joukowsky head change:

$$\Delta h = \frac{c}{g} * \Delta v$$

where c = wave propagation speed in pipe material

g = acceleration due to gravity Δv = change in flow velocity

- Occurs most often due to power failure (pump trip)
- Mitigation methods: surge tanks, damped check valves, surge relief valves, air inlet (vacuum relief) valves

Case Study – Flow Equalization Basin

- Prestressed Concrete Ground Storage Tank
- Pumped Influent, Gravity Drain
- Varying Water Levels Pose Hydraulic Challenges

Case Study – Flow Equalization Basin

VEA16_Rogers_Hydraulic Considerations in Pumping System De

Case Study – DC Water Blue Plains FADF FIP System

- (10) 100 MGD Vertical Turbine Pumps
 - Magnetic Drives limit to 90% turndown
 - Insufficient Submergence
 - · Pumps, motors and mag drives at end of life
- Slamming of check valves
 - Undersized air and vacuum valves
- Proposed System:
 - (10) 70 MGD Constant Speed Pumps
 - (2) 50 MGD Pumps (VFD's)
 - Premium Efficiency Motors
 - New Medium Voltage Electrical Facility
- Increase in Forebay WSE
 - Floating Datum Concept
- Refine Control Strategy

ogers_Hydraulic Considerations in Pumping System Design

FIP System – Energy Savings

- Replacement Pumps, Motors and Controllers
- Proposed Control Strategy
- Trial by locking Mag Drives at 100% with FIP 11 and 12 as trim pumps
- Operational Changes:
 - Discharge to FIC WSE at 26'
 - Increase Forebay WSE Floating Datum concept
 - Datum a function of influent flow and headloss

	FADU	Phase 2 Basi	s of Design	FIP Alternative Analysis Basis of Design					
Flow Condition	FIP Q (mgd)	Recycle Flow (mgd)	Forebay Operating Range (elev)	FIP Q (mgd)	Recycle Flow (mgd)	Forebay Operating Range (elev)			
Peak Influent	740	110	-1 to +3	555	110	+1 to X			
Average Influent	370	20	-1 to +3	330	20	+1 to X			
Minimum Influent Flow	180	0	-1 to +3	180	0	+1 to X			

FIP System Annual Energy Cost

Energy savings of approx. \$160,000 / year

16_Rogers_Hydraulic Considerations in Pumping System De

Case Study – DC Water Blue Plains RWWPS2

- (9) 100 MGD Split Case Centrifugal Pumps
- Rehabilitate for 20 year design life
 - On site repairs
 - Off site rehabilitation
 - Allowance for unanticipated work
 - Motor replacement
 - Controller replacement
- Rehabilitate Discharge Siphons
 - Design point correction
 - Energy Savings
- Refine Control Strategy

16_Rogers_Hydraulic Considerations in Pumping System Desig

RWWPS 2 - Discharge Siphon Improvements

- Rehabilitation of pumps and operation of the wet well at a higher WSE alleviates need for vacuum priming system
- Restore siphon operations 12" vent
 - Discharge check valve
 - Vacuum breaking valve
- Corrects the pumps primary operating point
- Provides for energy savings
 - 4' high point
 - PCS data shows ADF of 165 MGD
 - Wire to water efficiency of 70%
 - Energy cost \$0.09/kWh
 - Approximately \$100,000 / year in consumption

Summary – Pump and System Curves

- There will be several system curves explore all boundaries – low and high flow / elevations, existing and future C-factors
- Use real elevations for system curves (not pump TDH)
- Avoid flat pump curves if VFDs to be used
- Use affinity laws to explore speed impacts
- Duty point to be ~75% Q_{max}, close to BEP
- Aim for efficiencies > 75% single stage

Summary - Centrifugal Pump Selection

- Single duty point is insufficient to specify pump
- Give secondary points for VFD reduced speed curves
- No droopy curves unstable operation "shall continuously rise to shut off"
- Size motors for Run Out / Maximum HP
- Make sure pump motors are inverter-rated if using VFDs
- Pump motors can be noisy and generate heat (VFDs too)

16_Rogers_Hydraulic Considerations in Pumping System D

Summary - Good Hydraulic Design

- Develop system curves early
- Get real data measure, survey, test
- Follow HI Standards
- The best flow path is a smooth one
- Don't forget NPSH no cavitation!
- Consider surge pressure in design
- Consider the full range of possible operating conditions, now and future
- Provide flexibility and expandability
- Work with vendors and O&M staff
- Iterative process

Acknowledgements / Useful Web Sites

- Hydraulic Institute Standards www.pumps.org
- Books: Pumping Station Design Sanks, Perry's Chemical Engineers' Handbook, Cameron Hydraulic Data, etc.
- Other useful websites:
 - www.pump-zone.com
 - www.pumped101.com
 - www.mcnallyinstitute.com
 - www.pumpcalcs.com
 - www.eere.energy.gov
- Hazen colleagues Brian Porter, Bryan Lisk and Ellen Hall, among others

Questions?

Tad Rogers, PE, CCCA, ENV-SP

Richmond, VA

(804) 605-8525

grogers@hazenandsawyer.com