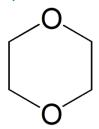


1,4-Dioxane, NDMA and Using GC/MS/MS for Environmental Analysis

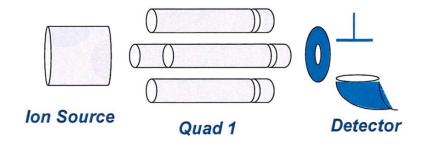

Megan Pennington-Boggio, PhD 07/30/19

N-Nitrosodimethylamine (NDMA) and 1,4-Dioxane

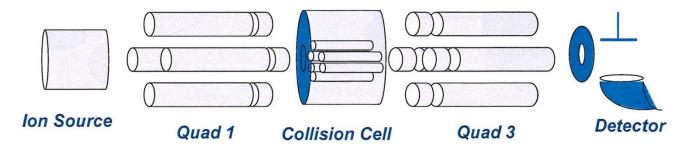
NDMA (CCL3, UCMR2)

$$H_3C$$
 N O $CH3$

1,4-Dioxane (CCL4, UCMR3)



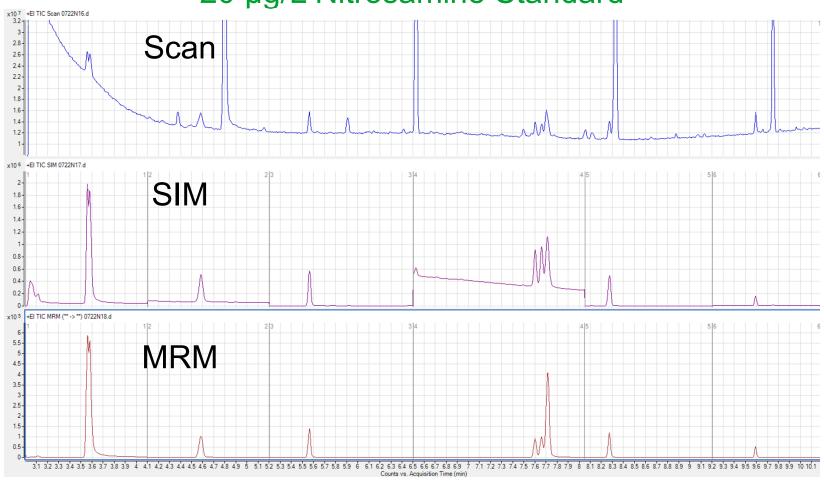
- Group B2, probable carcinogens
 - No MCL for drinking water set yet
- Indirect Potable Reuse SWIFT
 - Recharging the Potomac Aquifer
 - NDMA: 10 ng/L
 - 1,4-Dioxane: 1 μg/L



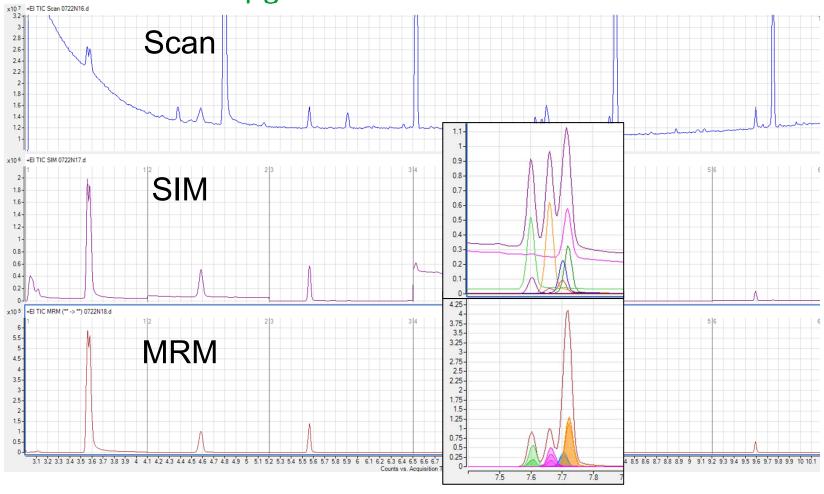
Intro to GC/MS/MS

Single Quadrupole – Scan or SIM

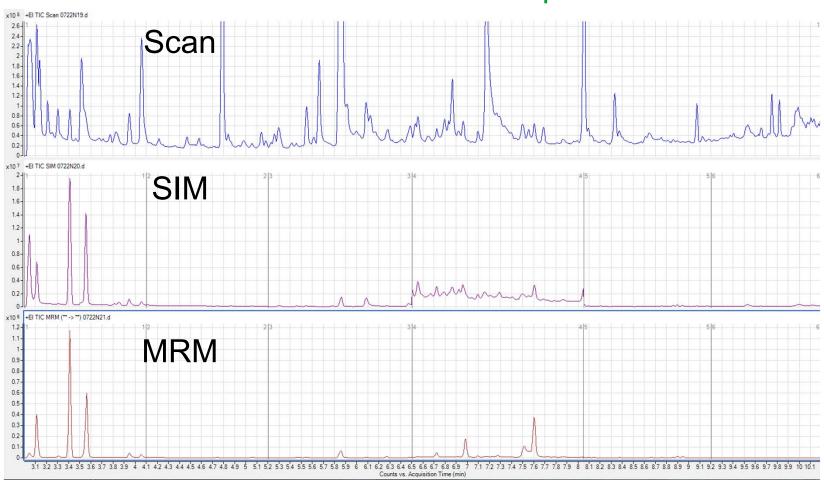
- "Triple" Quadrupole MRM (multiple reaction monitoring)
 - Improved Sensitivity & Selectivity



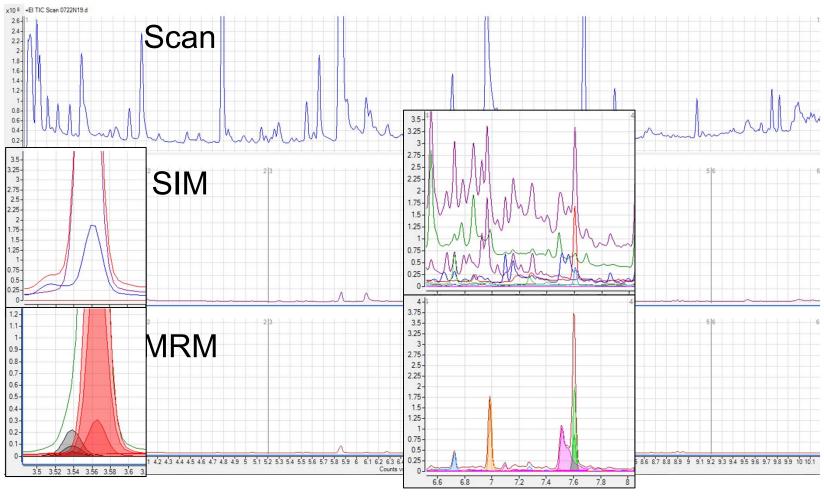
Scan vs. SIM vs. MRM - Standard


20 µg/L Nitrosamine Standard

Scan vs. SIM vs. MRM - Standard


20 µg/L Nitrosamine Standard

Scan vs. SIM vs. MRM - Sample

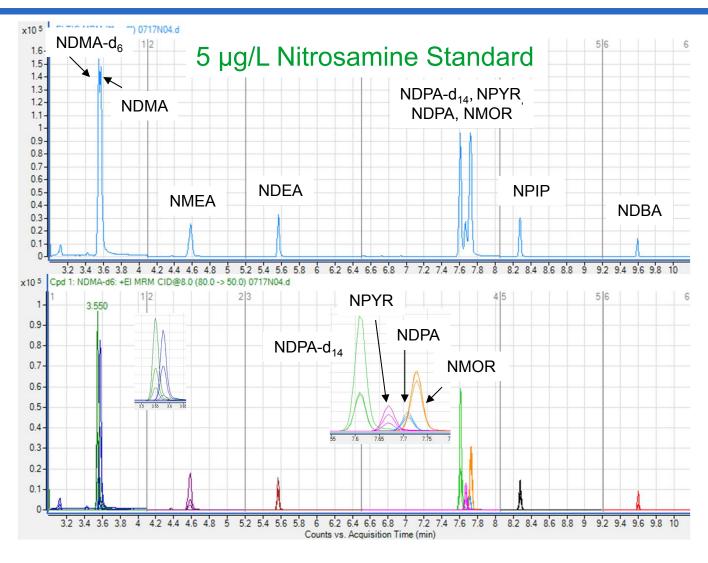

Industrial Waste Sample

Scan vs. SIM vs. MRM - Sample

Industrial Waste Sample

Nitrosamines by GC/MS/MS

- EPA 521 uses chemical ionization, ion trap MS
 - Obsolete instrumentation
 - More maintenance than electron ionization
- Eurofins Eaton Analytical 521.1
 - Agilent 7010 or 7000 GC/MS/MS
 - No change to extraction
 - Improved sensitivity
 - Added NMOR
 - Run time decreased from 40 min to 15 min
 - EPA approved method equivalency



Nitrosamine Analysis in Our Lab: GC Conditions

Column	RXI-5SilMS; 30 m, 0.25 mm ID, 0.5 µm film				
Injection Volume	1.5 μL	4 mm Single Taper w/wool			
Pulsed Splitless	260 °C; 35 psi until 0.5 min Purge flow: 100 mL/min at 0.5 min				
Oven Program	35 °C for 1 min 35 °C/min to 80 °C, for 2 min 20 °C/min to 135 °C, for 0.9 min 4 35 °C/min to 200 °C 50 °C/min to 220 °C 3 min post-run, 300 °C				
Carrier	•	.2 mL/min constant flow for post-run			

Nitrosamine Analysis in Our Lab: Chromatogram

Nitrosamine Extraction

- Automated Solid Phase Extraction (SPE)
 - Biotage Horizon SmartPrepII
- EPA 521 extraction procedure
 - Sodium Sulfate drying column
 - Concentration to 1 mL
- Initial recoveries were poor
 - Average 60% recovery for NDMA
 - 30-40% lost in drying and concentration steps

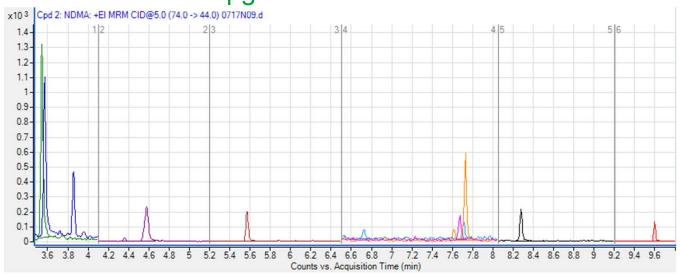
Can We Avoid Drying Columns?

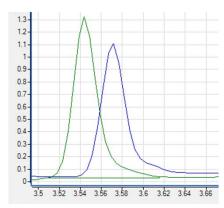
- Let the instrument do the work!
 - Agilent HES provides increased sensitivity
- Decreased calibration concentrations by 10x
 - Lowest standard: 100 ng/L
 - Quantitation limit for 500 mL sample = 2.0 ng/L
 - NDMA Area ≈ 2000 counts, S/N ≈ 60:1
- Final volume of 10 mL

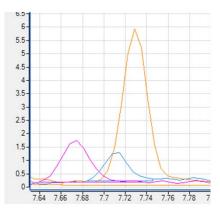
Mark Vial at 10 mL

 $\begin{array}{c} \mathsf{Add} \\ \mathsf{CH_2CI_2} \\ \hline \\ & \mathsf{\&} \; \mathsf{IS} \end{array}$

Add
Sodium
Sulfate


Collect 1-2 mL





Low Level Nitrosamine Calibration

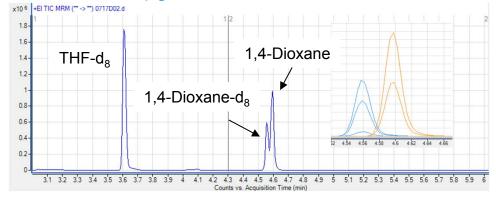
0.1 µg/L Nitrosamine Standard

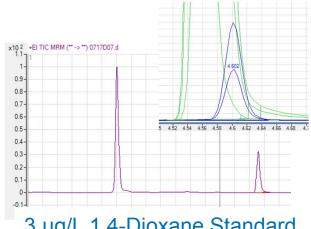
Current EPA Method- EPA 522

- GC/MS with SIM
- Requires Purge & Trap grade MeOH
- 18 min run time
- SPE extraction
 - 10 mL final volume, dry in situ

Not terrible, but we already have a GC/MS/MS...

1,4-Dioxane Analysis in Our Lab: GC Conditions


Column	RXI-5SiIMS; 30 m, 0.25 mm ID, 0.5 µm film					
Injection Volume	1.0 µL	1.0 μL 4 mm Single Taper w/wool				
Pulsed Splitless	150 °C; 35 psi until 0.5 min Purge flow: 100 mL/min at 0.5 min					
Oven Program	30 °C for 1.5 min 10 °C/min to 50 °C 30 °C/min to 90 °C 50 °C/min to 150 °C 5 min post-run, 300 °C		6 min run + 5 min post			
Carrier	•	; 1.2 mL/min constant flow in for post-run				



GC/MS/MS Analysis of 1,4-Dioxane

- P&T grade MeOH not required
- Lowest standard: 3 μg/L
 - Quantitation limit for 500 mL sample = 0.06 μg/L
 - Area ≈ 5600 counts
 - $S/N \approx 280:1$

3 μg/L 1,4-Dioxane Standard

What About Wastewater?

- Established Non-Potable Methods
 - 1,4-Dioxane:
 - 8260: Purge & Trap, MS
 - 8015: Direct injection, FID
 - 8270: Liquid-Liquid Extraction, MS
 - NDMA:
 - 625, 8270: Liquid-Liquid Extraction, MS
- RLs 100-1000 times higher

Wastewater? We Can Do That

Dirty matrices acceptable, with modification:

- Prefiltration
 - Raw influent, industrial waste
 - Surrogate added before filtration
- Dilution of extract
 - Raw influent
 - NDMA: RL= 4 ng/L
- Extraction of smaller volume
 - Industrial waste
 - 1,4-Dioxane: RL= 0.30 μg/L
 - NDMA: RL= 20 ng/L

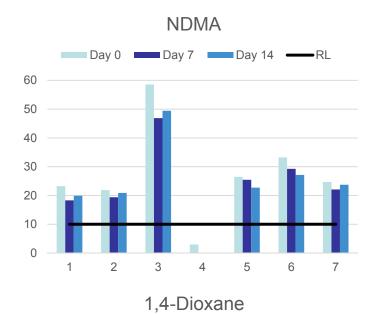
These Extractions Seem Redundant

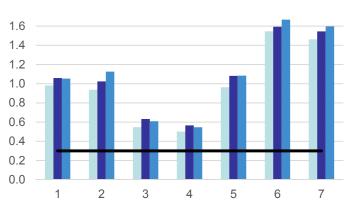
- Extraction procedure nearly identical
 - Only preservation differs
- Extracting 50-70 samples each week
 - Can we save time and resources?

Combined Determination of 1,4-Dioxane and Nitrosamine Contaminants in Drinking Water

Using a Single SPE Cartridge and Concurrent Solvent Recondensation– Large Volume Splitless Injection (CSR-LVSI) With EI GC-MS

By Chris Rattray and Jack Cochran


Combined Extraction of Nitrosamine and 1,4-Dioxane


- Restek paper did not address preservation
 - EPA 522 samples are pH <4
 - 25 mg Sodium Sulfite
 - 500 mg Sodium Bisulfate
 - EPA 521 samples are not pH adjusted
 - 50 mg Sodium Thiosulfate

	521 Pı	reservation	522 Preservation		
Conc.	NDMA	NDMA 1,4-Dioxane		1,4-Dioxane	
Low	121%	102%	133%	106%	
Medium	107%	107%	100%	99%	
High	98%	108%	86%	85%	

What about Holding Time?

EPA 521 Preservation

1: Spiked HPW

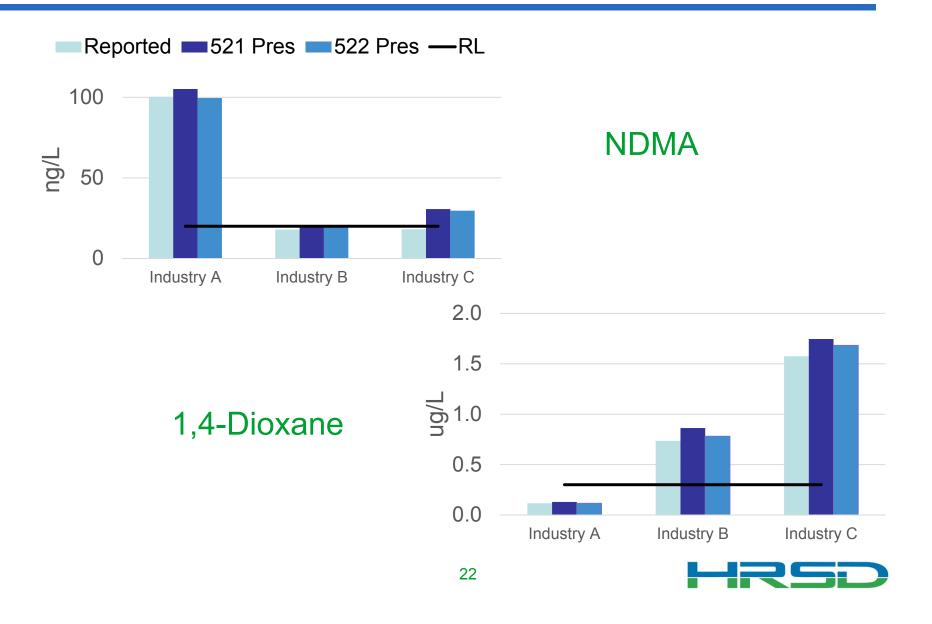
3: Sample

5: Spiked Sample

EPA 522 Preservation

2: Spiked HPW

4: Sample


6: Spiked Sample

No Preservation

7: Spiked Sample

Does it work for Complex Matrices?

Combined Extraction Summary

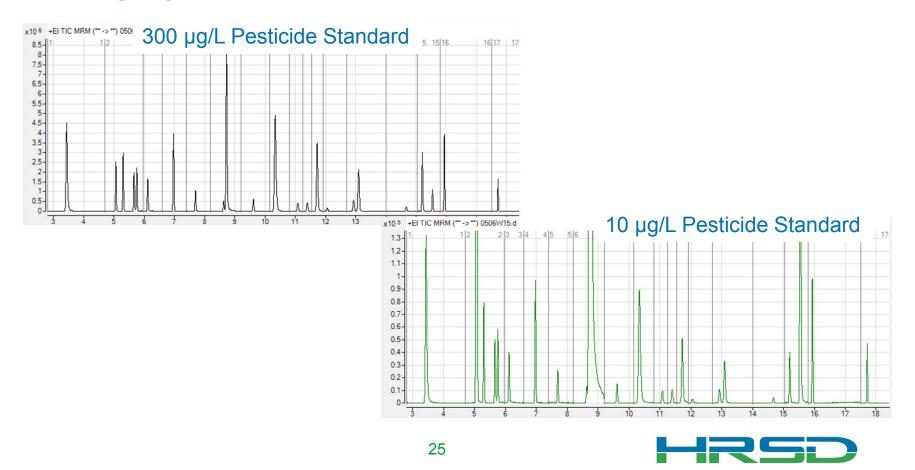
- EPA 521 extraction conditions
 - Add both surrogates and internal standards
 - 10 mL final volume
- EPA 522 preservation
- Analyzed by both instrument methods
- Used for research samples

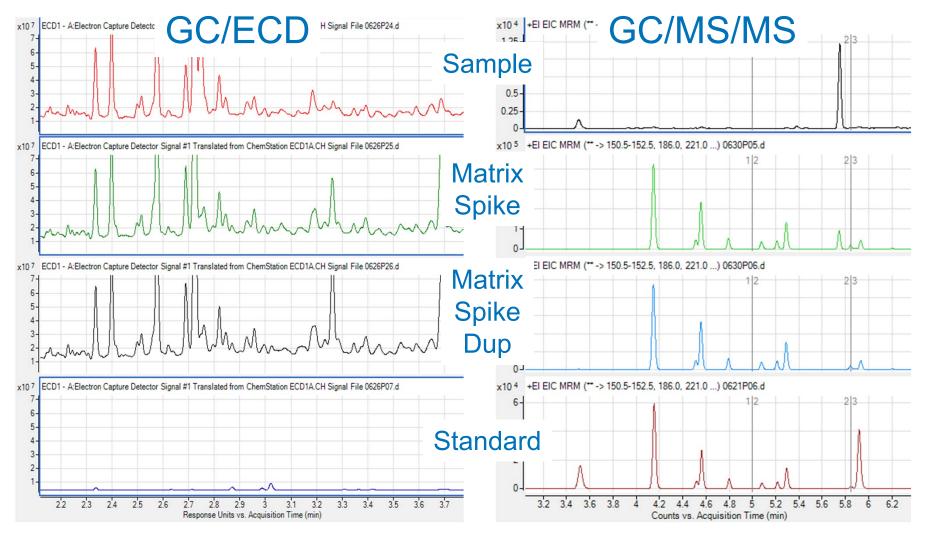
Decreased our workload by ~30 samples/week

What's Next?

- Add Tetrahydrofuran (THF)
- Develop single instrument method

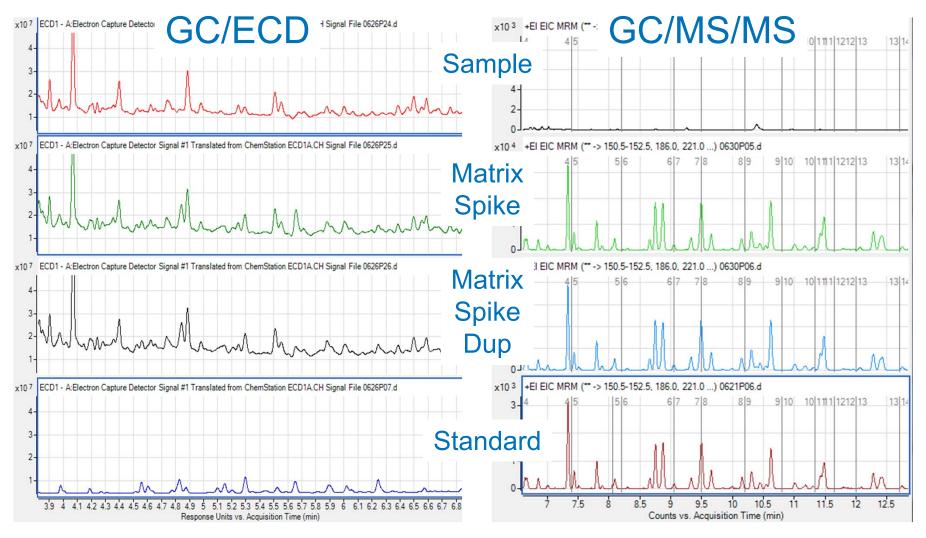
- 8 Nitrosamines, 1,4-Dioxane, THF





What Else Can GC/MS/MS Do?

Analysis of Organochlorine Pesticides & PCBs



Fingerprinting by GC/MS/MS - AR1221

Fingerprinting by GC/MS/MS – AR1254

Questions?

Contact: 757-460-4286 mboggio@hrsd.com

N-Nitrosodimethylamine (NDMA)

- Formerly, used in the production of:
 - Rocket fuel
 - Antioxidants and
 - Softeners for copolymers
- Currently, primarily a disinfection byproduct
- Classified as Group B2, probable carcinogen
 - No MCL for drinking water set yet
 - On CCL3 and UCMR2 lists
- Treatment options:
 - UV irradiation
 - Removal of precursors before Chloramination

1,4-Dioxane

- Formerly, widely used as a solvent stabilizer
- Present as a byproduct in a variety of goods
- Present in waste from manufacture of:
 - Pharmaceuticals
 - PET plastic, Textiles
- Classified as Group B2, probable carcinogen
 - No MCL for drinking water set yet
 - On CCL4 and UCMR3 lists
- Treatment options:
 - Oxidation by H₂O₂ and UV or Ozone

Nitrosamine Analysis in Our Lab: MS Parameters

Transfer Line Temperature	280 °C
Ionization Mode	EI; using HES source
Source Temperature	230 °C
Quadrupole Temperature	150 °C
Collision gas Quench Gas	1.5 mL/min 4.0 mL/min
Emission	100 μΑ

Nitrosamine Analysis in Our Lab: Transitions

Compound	Transition	CE	Compound	Transition	CE
NDMA-d6	$80 \rightarrow 50$	8	NPYR	$100 \rightarrow 70$	5
	$80 \rightarrow 48$	14		$100 \rightarrow 68$	14
	80 → 46	24		$\textbf{100} \rightarrow \textbf{55}$	8
NDMA	74 → 44	5	NDPA	$\textbf{130} \rightarrow \textbf{113}$	2
	$74 \rightarrow 42$	22		$130 \rightarrow 43$	10
	$74 \rightarrow 30$	14		$101 \rightarrow 70$	2
NMEA	$88 \rightarrow 73$	5	NMOR	116 → 86	2
	$88 \rightarrow 71$	3		$116 \rightarrow 56$	15
	$88 \rightarrow 57$	9		$86 \rightarrow 56$	8
NDEA	$\textbf{102} \rightarrow \textbf{85}$	5	NPIP	$114 \rightarrow 97$	8
	$102 \rightarrow 56$	15		114 → 84	8
	$102 \rightarrow 44$	14		114 → 55	22
NDPA-d14	$144 \rightarrow 126$	1	NDBA	158 → 141	2
	$144 \rightarrow 50$	14		$158 \rightarrow 99$	10
	78 → 46	14		116 → 99	2

1,4-Dioxane Analysis in Our Lab: MS Parameters

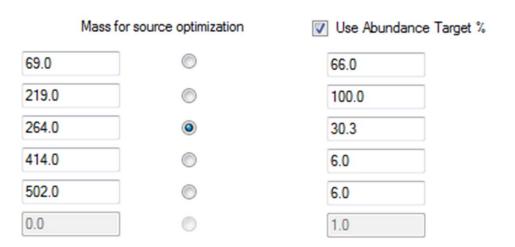
Transfer Line Temperature	280 °C
Ionization Mode	EI; using HES source
Source Temperature	230 °C
Quadrupole Temperature	150 °C
Collision gas Quench Gas	1.5 mL/min 2.25 mL/min
Emission	100 μΑ

1,4-Dioxane Analysis in Our Lab: Transitions

Compound	Transition	CE
THF-d8	80 → 78	5
	$80 \rightarrow 48$	12
	80 → 46	24
1,4-Dioxane-d8	96 → 64	7
	96 → 62	10
	$96 \rightarrow 46$	38
1,4-Dioxane	$88 \rightarrow 58$	7
	88 → 57	10

DFTPP and Endrin Degradation, Too!

- It is possible to pass a DFTPP tune check
- Endrin/DDT Degradation, too!


Target Mass	Rel. To Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Pass/Fail
68	69	0	2	0.9	26678	Pass
69	198	0	100	16.0	2895046	Pass
70	69	0	2	1.6	46534	Pass
197	198	0	2	0.1	12597	Pass
198	198	1	100	100.0	18081142	Pass
199	198	5	9	8.3	1508332	Pass
365	198	1	100	1.9	342149	Pass
441	443	0	150	80.1	2964987	Pass
442	198	1	200	88.9	16071824	Pass
443	442	15	24	23.0	3702286	Pass

Compound Name	Expected RT	Observed RT	TIC Area	Breakdown %	Pass/Fail
4,4'-DDT	9.220	9.121	301587439	1.7	Pass
4,4'-DDD	8.900	8.816	2114473		
4,4'-DDE	8.550	8.459	3192897		
Endrin	8.820	8.725	123522176	0.0	Pass
Endrin Aldehyde	9.050	0.000	0		
Endrin Ketone	9.650	0.000	0		

Expanding GC/MS/MS Analysis – DFTPP Tune Check

- Requires custom tune parameters
- Concentration of DFTPP, Pentachlorophenol and Benzidine important

