Wastewater Sample Collection Procedures

Craig A. Forbes – Pretreatment & Pollution Prevention Manager
Hampton Roads Sanitation District
VWEA Industrial Waste & Pretreatment Conference
Charlottesville, VA
March 8, 2016
OVERVIEW

• Sampling justification
• Sample collection
• Sample handling
• VPDES Clean Sampling
• QA/QC
• Questions
Future generations will inherit clean waterways and be able to keep them clean.
- Regulations/Compliance
 - 40 CFR Part 403
 - NPDES/VPDES
- Prevent introduction of pollutants that may interfere with plant works
- Prevent introduction of pollutants to POTW which may cause pass through
• Recycle or reclaim municipal/industrial wastewaters and biosolids
• Informational purposes/trends
• Reduce health and environmental risks of pollution from toxic pollutants
• Surcharge
KEY POINT:

THE ANALYTICAL RESULTS OF A SAMPLE ARE ONLY AS ACCURATE AS THE QUALITY OF THE SAMPLE TAKEN.
SAMPLING LOCATIONS

- Manhole
- Cleanout
- Batch tank- Top, Middle, Bottom
- Discharge lines of processes
- Sumps
• Seasonal operations
• Daily operating hours
• Production clean-up
• Upsets and spills
• Compliance history
TYPES OF SAMPLES

• Composite samples
 ▪ Time-weighted
 ▪ Flow-weighted
• Grab samples
• Volatile organics grab
• Semi-Volatile organics
 ▪ Grab
 ▪ Composite
WHAT PARAMETERS?

- Characteristic of process
- Categorical pollutants of concern
- Potential to upset or pass-through POTW
- Local Limits
- Surcharge
• Composite sampling equipment
• Portable pumps
• Grab pole
• Jar on a string
• Meters
SAMPLE PROBES
• Composite sampler
• Portable pumps
• Grab equipment
• Jars/Bottles
• New or cleaned sampling probes
• New or cleaned sample tubing
• Intermediate bottle (composite jug)
COLLECTING A REPRESENTATIVE SAMPLE

- Identify sample point
- Identify representative wastestream
 - Composite samples/portable pumps – place probe near middle of moving wastewater stream
 - Manual sampling with jars – place mouth or collection container below the surface to avoid excess floating material (surface skimming)
 - Batch Tanks – collect samples in equal aliquots from the top, middle and bottom or the tank
• Confined spaces
• Traffic
• Chemical vapors/fumes
• Explosion hazard
• Biting insects
• What is it?
 – Chemical or physical treatment of a sample to assure continued presence of the target analytes at the same level as when the sample was first taken

• Why do it?
 – Sample preservation restricts chemical and biological changes that could continue after sample collection

APPROVED SAMPLE PRESERVATION METHODS ARE LISTED IN 40 CFR PART 136
• Adsorption or ion exchange with walls of sample containers
 – Ex. Metals

• pH changes can cause some constituents to dissolve and others to precipitate
 – Ex. Calcium Carbonate, Hardness
• Biological and microbiological activity can change oxidation states of constituents either releasing them into solution or binding them
 – Ex. Nutrients, BOD
• Head space can result in loss of compounds
 – Ex. Volatile Organics
PRESERVATION METHODS

- pH control
- Interference checks/removal
- Cooling to 6 degrees Celsius
- Use of amber and opaque bottles
• Logbooks
 – Characteristics of wastestream
 – Sample volume collected
 – Field pH
 – Collection time

• Chain of Custody (C.O.C.)
 – Preservation noted
 – Interference checks noted
 – Number of samples
Quality assurance protocols are implemented to ensure that sample collection and cleaning procedures are not resulting in contamination of samples used to determine compliance.
QUALITY ASSURANCE METHODS

- **Equipment Blanks**
 - DI water is drawn through a cleaned sampler and collected for analysis

- **Field Blank**
 - DI water is drawn through a cleaned sampler in the field and collected for analysis

- **Split Samples**
 - Sample is divided into two containers for analysis to check handling and analytical procedures

- **Duplicate Samples**
 - Separate samples taken from the same source at the same time are collected for analysis
THE ANALYTICAL RESULTS OF A SAMPLE ARE ONLY AS ACCURATE AS THE QUALITY OF THE SAMPLE TAKEN