Purpose & Strategy
For engineers to meet the complex, global challenges of the 21st century, the engineering community must increase its capacity to recognize and incorporate diverse perspectives. We proposed that faculty-led teams provided with professional development in diversity, equity and inclusion (DEI) –focused “change leadership” can lead department-specific culture change to advance diversity, equity, and inclusion (DEI).

ME Team Participants
Five university Mechanical Engineering (ME) department teams (faculty, chairs, staff) were selected to participate in TECAID’s professional development activities based on their DEI-focused change proposals.

Project Activities
TECAID PIs and the Kardia Group (DEI-focused, organization change experts) provided “change leadership” support via four 2-day workshops, data-based feedback, a virtual learning community, clinic-ing sessions; “exemplar” dissemination opportunities; assessment and evaluation activities, and more. The timeline below identifies major TECAID workshops, VLC timeframe, Model development, and evaluation activities.

- **Workshop 1:** Awareness Building–Theory, Research, Experience, Culture
- **Workshop 2:** Hands-On Prioritizing of Change Goals and Change Planning
- **Workshop 3:** Strategies and Tactics for Testing and Implementing Change
- **Workshop 4:** Sustaining Change Leadership

TECAID Model
The TECAID Model for Leading Engineering Department Change in DEI incorporates requirements for cultivating change (ground), key actions to foster growth (tree), and the vision that sustains engagement (sun).

Outcomes
TECAID professional development provided significant increases in the three primary areas:
- “Head, Heart, Hands” TECAID Outcomes
 - Knowledge and Use of Diversity, Equity and Inclusion (DEI) Concepts
 - Confidence in Leadership Skills
 - DEI Action—Individual & Team

Resources
Check it out! www.WEPAN.org/mpage/TECAID
- TECAID Model
- TECAID Learning Modules
- TECAID Case Studies
- TECAID Resources

Acknowledgements
This material is based on work supported by the National Science Foundation under Grant No. EEC-1445076. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.